nervn / voxelnext_3d_box /utils /centernet_utils.py
mart9992's picture
m
b793f0c
# This file is modified from https://github.com/tianweiy/CenterPoint
import torch
def _topk_1d(scores, batch_size, batch_idx, obj, K=40, nuscenes=False):
# scores: (N, num_classes)
topk_score_list = []
topk_inds_list = []
topk_classes_list = []
for bs_idx in range(batch_size):
batch_inds = batch_idx==bs_idx
if obj.shape[-1] == 1 and not nuscenes:
score = scores[batch_inds].permute(1, 0)
topk_scores, topk_inds = torch.topk(score, K)
topk_score, topk_ind = torch.topk(obj[topk_inds.view(-1)].squeeze(-1), K) #torch.topk(topk_scores.view(-1), K)
else:
score = obj[batch_inds].permute(1, 0)
topk_scores, topk_inds = torch.topk(score, min(K, score.shape[-1]))
topk_score, topk_ind = torch.topk(topk_scores.view(-1), min(K, topk_scores.view(-1).shape[-1]))
topk_classes = (topk_ind // K).int()
topk_inds = topk_inds.view(-1).gather(0, topk_ind)
#print('topk_inds', topk_inds)
if not obj is None and obj.shape[-1] == 1:
topk_score_list.append(obj[batch_inds][topk_inds])
else:
topk_score_list.append(topk_score)
topk_inds_list.append(topk_inds)
topk_classes_list.append(topk_classes)
topk_score = torch.stack(topk_score_list)
topk_inds = torch.stack(topk_inds_list)
topk_classes = torch.stack(topk_classes_list)
return topk_score, topk_inds, topk_classes
def gather_feat_idx(feats, inds, batch_size, batch_idx):
feats_list = []
dim = feats.size(-1)
_inds = inds.unsqueeze(-1).expand(inds.size(0), inds.size(1), dim)
for bs_idx in range(batch_size):
batch_inds = batch_idx==bs_idx
feat = feats[batch_inds]
feats_list.append(feat.gather(0, _inds[bs_idx]))
feats = torch.stack(feats_list)
return feats
def decode_bbox_from_voxels_nuscenes(batch_size, indices, obj, rot_cos, rot_sin,
center, center_z, dim, vel=None, iou=None, point_cloud_range=None, voxel_size=None, voxels_3d=None,
feature_map_stride=None, K=100, score_thresh=None, post_center_limit_range=None, add_features=None):
batch_idx = indices[:, 0]
spatial_indices = indices[:, 1:]
scores, inds, class_ids = _topk_1d(None, batch_size, batch_idx, obj, K=K, nuscenes=True)
center = gather_feat_idx(center, inds, batch_size, batch_idx)
rot_sin = gather_feat_idx(rot_sin, inds, batch_size, batch_idx)
rot_cos = gather_feat_idx(rot_cos, inds, batch_size, batch_idx)
center_z = gather_feat_idx(center_z, inds, batch_size, batch_idx)
dim = gather_feat_idx(dim, inds, batch_size, batch_idx)
spatial_indices = gather_feat_idx(spatial_indices, inds, batch_size, batch_idx)
if not add_features is None:
add_features = gather_feat_idx(add_features, inds, batch_size, batch_idx) #for add_feature in add_features]
if not isinstance(feature_map_stride, int):
feature_map_stride = gather_feat_idx(feature_map_stride.unsqueeze(-1), inds, batch_size, batch_idx)
angle = torch.atan2(rot_sin, rot_cos)
xs = (spatial_indices[:, :, -1:] + center[:, :, 0:1]) * feature_map_stride * voxel_size[0] + point_cloud_range[0]
ys = (spatial_indices[:, :, -2:-1] + center[:, :, 1:2]) * feature_map_stride * voxel_size[1] + point_cloud_range[1]
box_part_list = [xs, ys, center_z, dim, angle]
if not vel is None:
vel = gather_feat_idx(vel, inds, batch_size, batch_idx)
box_part_list.append(vel)
if not iou is None:
iou = gather_feat_idx(iou, inds, batch_size, batch_idx)
iou = torch.clamp(iou, min=0, max=1.)
final_box_preds = torch.cat((box_part_list), dim=-1)
final_scores = scores.view(batch_size, K)
final_class_ids = class_ids.view(batch_size, K)
if not add_features is None:
add_features = add_features.view(batch_size, K, add_features.shape[-1]) #for add_feature in add_features]
assert post_center_limit_range is not None
mask = (final_box_preds[..., :3] >= post_center_limit_range[:3]).all(2)
mask &= (final_box_preds[..., :3] <= post_center_limit_range[3:]).all(2)
if score_thresh is not None:
mask &= (final_scores > score_thresh)
ret_pred_dicts = []
for k in range(batch_size):
cur_mask = mask[k]
cur_boxes = final_box_preds[k, cur_mask]
cur_scores = final_scores[k, cur_mask]
cur_labels = final_class_ids[k, cur_mask]
cur_add_features = add_features[k, cur_mask] if not add_features is None else None
cur_iou = iou[k, cur_mask] if not iou is None else None
ret_pred_dicts.append({
'pred_boxes': cur_boxes,
'pred_scores': cur_scores,
'pred_labels': cur_labels,
'pred_ious': cur_iou,
'add_features': cur_add_features,
})
return ret_pred_dicts