--- license: mit language: - ru metrics: - seqeval tags: - generated-from-trainer - restore_punctuation widget: - text: почему она ушла несмотря на то что ей было хорошо - text: привет как дела - text: сколько денег нужно чтобы стать счастливым - text: это было сильно смело но глупо --- # ruBert-base for Punctuation Correction The model is built upon the foundation of [ruBert-base](https://huggingface.co./ai-forever/ruBert-base) and has been fine-tuned to correctly place punctuation marks in Russian sentences (it predicts the mark after each word). Some additional info about the model: - **Fine-Tuning Source:** The model has undergone fine-tuning using a diverse dataset comprising over 20,000 paragraphs from Russian literary works. - **Supported Classes:** The model is designed to predict classes following specific punctuation marks: ? ! . , : ... and space (as class O). - **Input Format:** To achieve optimal results, input text should be provided without punctuation marks. The model does not process changes in letter case. ## Usage Guidelines To use the model effectively, follow these guidelines: 1. **Input Text:** Feed the model with text excluding punctuation marks. 2. **Letter Case:** The model does not recognize changes in letter case. ## Authors - Mark Stolyarov