marcomameli01
commited on
Commit
·
87726a2
1
Parent(s):
377c3f5
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- gear-segmentation
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: segformer-b0-finetuned-segments-gear2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# segformer-b0-finetuned-segments-gear2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the marcomameli01/gear dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1268
|
20 |
+
- Mean Iou: 0.1254
|
21 |
+
- Mean Accuracy: 0.2509
|
22 |
+
- Overall Accuracy: 0.2509
|
23 |
+
- Per Category Iou: [0.0, 0.2508641975308642]
|
24 |
+
- Per Category Accuracy: [nan, 0.2508641975308642]
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 6e-05
|
44 |
+
- train_batch_size: 2
|
45 |
+
- eval_batch_size: 2
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 50
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------:|:--------------------------:|
|
55 |
+
| 0.4614 | 5.0 | 20 | 0.4427 | 0.0741 | 0.1481 | 0.1481 | [0.0, 0.14814814814814814] | [nan, 0.14814814814814814] |
|
56 |
+
| 0.3327 | 10.0 | 40 | 0.2933 | 0.1726 | 0.3453 | 0.3453 | [0.0, 0.34528395061728395] | [nan, 0.34528395061728395] |
|
57 |
+
| 0.2305 | 15.0 | 60 | 0.2244 | 0.0382 | 0.0763 | 0.0763 | [0.0, 0.07634567901234568] | [nan, 0.07634567901234568] |
|
58 |
+
| 0.2011 | 20.0 | 80 | 0.2130 | 0.0374 | 0.0748 | 0.0748 | [0.0, 0.07476543209876543] | [nan, 0.07476543209876543] |
|
59 |
+
| 0.1846 | 25.0 | 100 | 0.1672 | 0.1037 | 0.2073 | 0.2073 | [0.0, 0.20730864197530866] | [nan, 0.20730864197530866] |
|
60 |
+
| 0.1622 | 30.0 | 120 | 0.1532 | 0.0805 | 0.1611 | 0.1611 | [0.0, 0.1610864197530864] | [nan, 0.1610864197530864] |
|
61 |
+
| 0.139 | 35.0 | 140 | 0.1396 | 0.0971 | 0.1942 | 0.1942 | [0.0, 0.19417283950617284] | [nan, 0.19417283950617284] |
|
62 |
+
| 0.1342 | 40.0 | 160 | 0.1283 | 0.0748 | 0.1496 | 0.1496 | [0.0, 0.14962962962962964] | [nan, 0.14962962962962964] |
|
63 |
+
| 0.128 | 45.0 | 180 | 0.1224 | 0.1128 | 0.2256 | 0.2256 | [0.0, 0.22558024691358025] | [nan, 0.22558024691358025] |
|
64 |
+
| 0.1243 | 50.0 | 200 | 0.1268 | 0.1254 | 0.2509 | 0.2509 | [0.0, 0.2508641975308642] | [nan, 0.2508641975308642] |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.20.0
|
70 |
+
- Pytorch 1.11.0+cu113
|
71 |
+
- Datasets 2.3.2
|
72 |
+
- Tokenizers 0.12.1
|