File size: 6,268 Bytes
26c452f
 
 
 
 
 
 
 
 
 
15f147e
26c452f
 
 
 
 
 
6e0cf0b
26c452f
 
 
 
 
 
 
 
07f3839
26c452f
 
 
07f3839
26c452f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-Facial-Confidence
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-Facial-Confidence

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the FacialConfidence dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2560
- Accuracy: 0.8970

## Model description

Facial Confidence is an image classification model which takes a black and white image of a persons headshot and classifies it as confident or uncofident.

## Intended uses & limitations

The model is intended to help with behavioral analysis tasks. The model is limited to black and white images where the image is a zoomed in headshot of a person (For best output the input image should be as zoomed in on the subjects face as possible without cutting any aspects of their head)


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6103        | 0.0557 | 100  | 0.5715          | 0.7310   |
| 0.554         | 0.1114 | 200  | 0.5337          | 0.7194   |
| 0.4275        | 0.1671 | 300  | 0.5142          | 0.7549   |
| 0.5831        | 0.2228 | 400  | 0.5570          | 0.7345   |
| 0.5804        | 0.2786 | 500  | 0.4909          | 0.7660   |
| 0.5652        | 0.3343 | 600  | 0.4956          | 0.7764   |
| 0.4513        | 0.3900 | 700  | 0.4294          | 0.7972   |
| 0.4217        | 0.4457 | 800  | 0.4619          | 0.7924   |
| 0.435         | 0.5014 | 900  | 0.4563          | 0.7901   |
| 0.3943        | 0.5571 | 1000 | 0.4324          | 0.7917   |
| 0.4136        | 0.6128 | 1100 | 0.4131          | 0.8110   |
| 0.3302        | 0.6685 | 1200 | 0.4516          | 0.8054   |
| 0.4945        | 0.7242 | 1300 | 0.4135          | 0.8164   |
| 0.3729        | 0.7799 | 1400 | 0.4010          | 0.8139   |
| 0.4865        | 0.8357 | 1500 | 0.4145          | 0.8174   |
| 0.4011        | 0.8914 | 1600 | 0.4098          | 0.8112   |
| 0.4287        | 0.9471 | 1700 | 0.3914          | 0.8181   |
| 0.3644        | 1.0028 | 1800 | 0.3948          | 0.8188   |
| 0.3768        | 1.0585 | 1900 | 0.4044          | 0.8266   |
| 0.383         | 1.1142 | 2000 | 0.4363          | 0.8064   |
| 0.4011        | 1.1699 | 2100 | 0.4424          | 0.8025   |
| 0.4079        | 1.2256 | 2200 | 0.4384          | 0.7853   |
| 0.2791        | 1.2813 | 2300 | 0.4491          | 0.8089   |
| 0.3159        | 1.3370 | 2400 | 0.3863          | 0.8274   |
| 0.4306        | 1.3928 | 2500 | 0.3944          | 0.8158   |
| 0.3386        | 1.4485 | 2600 | 0.3835          | 0.8305   |
| 0.395         | 1.5042 | 2700 | 0.3812          | 0.8261   |
| 0.3041        | 1.5599 | 2800 | 0.3736          | 0.8312   |
| 0.3365        | 1.6156 | 2900 | 0.4420          | 0.8097   |
| 0.3697        | 1.6713 | 3000 | 0.3808          | 0.8353   |
| 0.3661        | 1.7270 | 3100 | 0.4046          | 0.8084   |
| 0.3208        | 1.7827 | 3200 | 0.4042          | 0.8328   |
| 0.3511        | 1.8384 | 3300 | 0.4113          | 0.8192   |
| 0.3246        | 1.8942 | 3400 | 0.3611          | 0.8377   |
| 0.3616        | 1.9499 | 3500 | 0.4207          | 0.8231   |
| 0.2726        | 2.0056 | 3600 | 0.3650          | 0.8342   |
| 0.1879        | 2.0613 | 3700 | 0.4334          | 0.8359   |
| 0.2981        | 2.1170 | 3800 | 0.3657          | 0.8435   |
| 0.227         | 2.1727 | 3900 | 0.3948          | 0.8399   |
| 0.3184        | 2.2284 | 4000 | 0.4229          | 0.8377   |
| 0.2391        | 2.2841 | 4100 | 0.3824          | 0.8405   |
| 0.2019        | 2.3398 | 4200 | 0.4628          | 0.8345   |
| 0.1931        | 2.3955 | 4300 | 0.3848          | 0.8448   |
| 0.238         | 2.4513 | 4400 | 0.3948          | 0.8398   |
| 0.2633        | 2.5070 | 4500 | 0.3779          | 0.8440   |
| 0.1829        | 2.5627 | 4600 | 0.3901          | 0.8455   |
| 0.2286        | 2.6184 | 4700 | 0.3797          | 0.8481   |
| 0.2123        | 2.6741 | 4800 | 0.4203          | 0.8502   |
| 0.266         | 2.7298 | 4900 | 0.4073          | 0.8455   |
| 0.1768        | 2.7855 | 5000 | 0.3750          | 0.8498   |
| 0.1659        | 2.8412 | 5100 | 0.3906          | 0.8427   |
| 0.1644        | 2.8969 | 5200 | 0.3833          | 0.8466   |
| 0.241         | 2.9526 | 5300 | 0.4071          | 0.8476   |
| 0.16          | 3.0084 | 5400 | 0.3691          | 0.8530   |
| 0.0788        | 3.0641 | 5500 | 0.4656          | 0.8514   |
| 0.1244        | 3.1198 | 5600 | 0.4990          | 0.8484   |
| 0.1423        | 3.1755 | 5700 | 0.5219          | 0.8475   |
| 0.1279        | 3.2312 | 5800 | 0.5687          | 0.8515   |
| 0.0974        | 3.2869 | 5900 | 0.5386          | 0.8458   |
| 0.065         | 3.3426 | 6000 | 0.5215          | 0.8454   |
| 0.0497        | 3.3983 | 6100 | 0.5161          | 0.8483   |
| 0.1871        | 3.4540 | 6200 | 0.5148          | 0.8523   |
| 0.0891        | 3.5097 | 6300 | 0.4915          | 0.8527   |
| 0.1375        | 3.5655 | 6400 | 0.5067          | 0.8509   |
| 0.1333        | 3.6212 | 6500 | 0.5272          | 0.8532   |
| 0.2635        | 3.6769 | 6600 | 0.5170          | 0.8516   |
| 0.0375        | 3.7326 | 6700 | 0.5148          | 0.8534   |
| 0.1286        | 3.7883 | 6800 | 0.4945          | 0.8543   |
| 0.091         | 3.8440 | 6900 | 0.4948          | 0.8540   |
| 0.1088        | 3.8997 | 7000 | 0.4985          | 0.8532   |
| 0.0598        | 3.9554 | 7100 | 0.4969          | 0.8514   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1