--- license: apache-2.0 base_model: google/vit-base-patch16-384 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: test-2-geoguessr-55 results: [] --- # test-2-geoguessr-55 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co./google/vit-base-patch16-384) on [marcelomoreno26/geoguessr](https://huggingface.co./datasets/marcelomoreno26/geoguessr) dataset. It achieves the following results on the evaluation set: - Loss: 2.4296 - Accuracy: 0.3881 - F1: 0.1440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 394 | 3.3218 | 0.1603 | 0.0292 | | 3.5132 | 2.0 | 788 | 3.1195 | 0.2243 | 0.0494 | | 3.1361 | 3.0 | 1182 | 2.9820 | 0.2587 | 0.0657 | | 2.9576 | 4.0 | 1576 | 2.8774 | 0.2906 | 0.0816 | | 2.9576 | 5.0 | 1970 | 2.7940 | 0.3125 | 0.0950 | | 2.8298 | 6.0 | 2364 | 2.7271 | 0.3250 | 0.1042 | | 2.7378 | 7.0 | 2758 | 2.6721 | 0.3366 | 0.1112 | | 2.6526 | 8.0 | 3152 | 2.6268 | 0.3466 | 0.1156 | | 2.5971 | 9.0 | 3546 | 2.5882 | 0.3546 | 0.1220 | | 2.5971 | 10.0 | 3940 | 2.5558 | 0.3630 | 0.1269 | | 2.5468 | 11.0 | 4334 | 2.5286 | 0.3699 | 0.1321 | | 2.519 | 12.0 | 4728 | 2.5057 | 0.3721 | 0.1337 | | 2.4769 | 13.0 | 5122 | 2.4865 | 0.3760 | 0.1359 | | 2.4528 | 14.0 | 5516 | 2.4706 | 0.3805 | 0.1387 | | 2.4528 | 15.0 | 5910 | 2.4577 | 0.3820 | 0.1391 | | 2.4307 | 16.0 | 6304 | 2.4473 | 0.3840 | 0.1410 | | 2.4207 | 17.0 | 6698 | 2.4395 | 0.3863 | 0.1428 | | 2.4114 | 18.0 | 7092 | 2.4340 | 0.3874 | 0.1437 | | 2.4114 | 19.0 | 7486 | 2.4307 | 0.3883 | 0.1440 | | 2.4 | 20.0 | 7880 | 2.4296 | 0.3881 | 0.1440 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2