marcelomoreno26
commited on
Add SetFit ABSA model
Browse files- 1_Pooling/config.json +10 -0
- README.md +553 -0
- config.json +24 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +10 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- absa
|
6 |
+
- sentence-transformers
|
7 |
+
- text-classification
|
8 |
+
- generated_from_setfit_trainer
|
9 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
widget:
|
13 |
+
- text: Needs Power and Mouse Cable to Plug in:Needs Power and Mouse Cable to Plug
|
14 |
+
in back instead of side, In the way of operating a mouse in small area.
|
15 |
+
- text: wireless router via built-in wireless took no time:Connecting to my wireless
|
16 |
+
router via built-in wireless took no time at all.
|
17 |
+
- text: The battery life is probably an:The battery life is probably an hour at best.
|
18 |
+
- text: and with free shipping and no tax:The 13" Macbook Pro just fits in my budget
|
19 |
+
and with free shipping and no tax to CA this is the best price we can get for
|
20 |
+
a great product.
|
21 |
+
- text: product is top quality.:The price was very good, and the product is top quality.
|
22 |
+
pipeline_tag: text-classification
|
23 |
+
inference: false
|
24 |
+
model-index:
|
25 |
+
- name: SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
|
26 |
+
results:
|
27 |
+
- task:
|
28 |
+
type: text-classification
|
29 |
+
name: Text Classification
|
30 |
+
dataset:
|
31 |
+
name: Unknown
|
32 |
+
type: unknown
|
33 |
+
split: test
|
34 |
+
metrics:
|
35 |
+
- type: accuracy
|
36 |
+
value: 0.7788235294117647
|
37 |
+
name: Accuracy
|
38 |
+
---
|
39 |
+
|
40 |
+
# SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
|
41 |
+
|
42 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
|
43 |
+
|
44 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
45 |
+
|
46 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
47 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
48 |
+
|
49 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
50 |
+
|
51 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
52 |
+
2. Use a SetFit model to filter these possible aspect span candidates.
|
53 |
+
3. **Use this SetFit model to classify the filtered aspect span candidates.**
|
54 |
+
|
55 |
+
## Model Details
|
56 |
+
|
57 |
+
### Model Description
|
58 |
+
- **Model Type:** SetFit
|
59 |
+
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
|
60 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
61 |
+
- **spaCy Model:** en_core_web_sm
|
62 |
+
- **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co/setfit-absa-aspect)
|
63 |
+
- **SetFitABSA Polarity Model:** [marcelomoreno26/all-mpnet-base-v2-absa-polarity2](https://huggingface.co/marcelomoreno26/all-mpnet-base-v2-absa-polarity2)
|
64 |
+
- **Maximum Sequence Length:** 384 tokens
|
65 |
+
- **Number of Classes:** 4 classes
|
66 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
67 |
+
<!-- - **Language:** Unknown -->
|
68 |
+
<!-- - **License:** Unknown -->
|
69 |
+
|
70 |
+
### Model Sources
|
71 |
+
|
72 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
73 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
74 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
75 |
+
|
76 |
+
### Model Labels
|
77 |
+
| Label | Examples |
|
78 |
+
|:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
79 |
+
| neutral | <ul><li>'skip taking the cord with me because:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'The tech guy then said the:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'all dark, power light steady, hard:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul> |
|
80 |
+
| positive | <ul><li>'of the good battery life.:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'is of high quality, has a:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li><li>'has a killer GUI, is extremely:it is of high quality, has a killer GUI, is extremely stable, is highly expandable, is bundled with lots of very good applications, is easy to use, and is absolutely gorgeous.'</li></ul> |
|
81 |
+
| negative | <ul><li>'then said the service center does not do:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'concern to the "sales" team, which is:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li><li>'on, no GUI, screen all:\xa0One night I turned the freaking thing off after using it, the next day I turn it on, no GUI, screen all dark, power light steady, hard drive light steady and not flashing as it usually does.'</li></ul> |
|
82 |
+
| conflict | <ul><li>'-No backlit keyboard, but not:-No backlit keyboard, but not an issue for me.'</li><li>"to replace the battery once, but:I did have to replace the battery once, but that was only a couple months ago and it's been working perfect ever since."</li><li>'Yes, they cost more, but:Yes, they cost more, but they more than make up for it in speed, construction quality, and longevity.'</li></ul> |
|
83 |
+
|
84 |
+
## Evaluation
|
85 |
+
|
86 |
+
### Metrics
|
87 |
+
| Label | Accuracy |
|
88 |
+
|:--------|:---------|
|
89 |
+
| **all** | 0.7788 |
|
90 |
+
|
91 |
+
## Uses
|
92 |
+
|
93 |
+
### Direct Use for Inference
|
94 |
+
|
95 |
+
First install the SetFit library:
|
96 |
+
|
97 |
+
```bash
|
98 |
+
pip install setfit
|
99 |
+
```
|
100 |
+
|
101 |
+
Then you can load this model and run inference.
|
102 |
+
|
103 |
+
```python
|
104 |
+
from setfit import AbsaModel
|
105 |
+
|
106 |
+
# Download from the 🤗 Hub
|
107 |
+
model = AbsaModel.from_pretrained(
|
108 |
+
"setfit-absa-aspect",
|
109 |
+
"marcelomoreno26/all-mpnet-base-v2-absa-polarity2",
|
110 |
+
)
|
111 |
+
# Run inference
|
112 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
113 |
+
```
|
114 |
+
|
115 |
+
<!--
|
116 |
+
### Downstream Use
|
117 |
+
|
118 |
+
*List how someone could finetune this model on their own dataset.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
### Out-of-Scope Use
|
123 |
+
|
124 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
<!--
|
128 |
+
## Bias, Risks and Limitations
|
129 |
+
|
130 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
131 |
+
-->
|
132 |
+
|
133 |
+
<!--
|
134 |
+
### Recommendations
|
135 |
+
|
136 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
137 |
+
-->
|
138 |
+
|
139 |
+
## Training Details
|
140 |
+
|
141 |
+
### Training Set Metrics
|
142 |
+
| Training set | Min | Median | Max |
|
143 |
+
|:-------------|:----|:--------|:----|
|
144 |
+
| Word count | 3 | 24.3447 | 80 |
|
145 |
+
|
146 |
+
| Label | Training Sample Count |
|
147 |
+
|:---------|:----------------------|
|
148 |
+
| negative | 235 |
|
149 |
+
| neutral | 127 |
|
150 |
+
| positive | 271 |
|
151 |
+
|
152 |
+
### Training Hyperparameters
|
153 |
+
- batch_size: (16, 2)
|
154 |
+
- num_epochs: (1, 16)
|
155 |
+
- max_steps: -1
|
156 |
+
- sampling_strategy: oversampling
|
157 |
+
- body_learning_rate: (2e-05, 1e-05)
|
158 |
+
- head_learning_rate: 0.01
|
159 |
+
- loss: CosineSimilarityLoss
|
160 |
+
- distance_metric: cosine_distance
|
161 |
+
- margin: 0.25
|
162 |
+
- end_to_end: False
|
163 |
+
- use_amp: False
|
164 |
+
- warmup_proportion: 0.1
|
165 |
+
- seed: 42
|
166 |
+
- eval_max_steps: -1
|
167 |
+
- load_best_model_at_end: False
|
168 |
+
|
169 |
+
### Training Results
|
170 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
171 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
172 |
+
| 0.3333 | 1 | 0.3749 | - |
|
173 |
+
| 0.0030 | 50 | 0.3097 | - |
|
174 |
+
| 0.0059 | 100 | 0.2214 | - |
|
175 |
+
| 0.0089 | 150 | 0.2125 | - |
|
176 |
+
| 0.0119 | 200 | 0.3202 | - |
|
177 |
+
| 0.0148 | 250 | 0.1878 | - |
|
178 |
+
| 0.0178 | 300 | 0.1208 | - |
|
179 |
+
| 0.0208 | 350 | 0.2414 | - |
|
180 |
+
| 0.0237 | 400 | 0.1961 | - |
|
181 |
+
| 0.0267 | 450 | 0.0607 | - |
|
182 |
+
| 0.0296 | 500 | 0.1103 | - |
|
183 |
+
| 0.0326 | 550 | 0.1213 | - |
|
184 |
+
| 0.0356 | 600 | 0.0972 | - |
|
185 |
+
| 0.0385 | 650 | 0.0124 | - |
|
186 |
+
| 0.0415 | 700 | 0.0151 | - |
|
187 |
+
| 0.0445 | 750 | 0.1517 | - |
|
188 |
+
| 0.0474 | 800 | 0.004 | - |
|
189 |
+
| 0.0504 | 850 | 0.0204 | - |
|
190 |
+
| 0.0534 | 900 | 0.0541 | - |
|
191 |
+
| 0.0563 | 950 | 0.003 | - |
|
192 |
+
| 0.0593 | 1000 | 0.0008 | - |
|
193 |
+
| 0.0623 | 1050 | 0.0703 | - |
|
194 |
+
| 0.0652 | 1100 | 0.0013 | - |
|
195 |
+
| 0.0682 | 1150 | 0.0007 | - |
|
196 |
+
| 0.0712 | 1200 | 0.0009 | - |
|
197 |
+
| 0.0741 | 1250 | 0.0004 | - |
|
198 |
+
| 0.0771 | 1300 | 0.0004 | - |
|
199 |
+
| 0.0801 | 1350 | 0.0005 | - |
|
200 |
+
| 0.0830 | 1400 | 0.0006 | - |
|
201 |
+
| 0.0860 | 1450 | 0.0004 | - |
|
202 |
+
| 0.0889 | 1500 | 0.0002 | - |
|
203 |
+
| 0.0919 | 1550 | 0.0002 | - |
|
204 |
+
| 0.0949 | 1600 | 0.0001 | - |
|
205 |
+
| 0.0978 | 1650 | 0.0006 | - |
|
206 |
+
| 0.1008 | 1700 | 0.0002 | - |
|
207 |
+
| 0.1038 | 1750 | 0.0012 | - |
|
208 |
+
| 0.1067 | 1800 | 0.0008 | - |
|
209 |
+
| 0.1097 | 1850 | 0.0048 | - |
|
210 |
+
| 0.1127 | 1900 | 0.0007 | - |
|
211 |
+
| 0.1156 | 1950 | 0.0001 | - |
|
212 |
+
| 0.1186 | 2000 | 0.0001 | - |
|
213 |
+
| 0.1216 | 2050 | 0.0001 | - |
|
214 |
+
| 0.1245 | 2100 | 0.0001 | - |
|
215 |
+
| 0.1275 | 2150 | 0.0001 | - |
|
216 |
+
| 0.1305 | 2200 | 0.0001 | - |
|
217 |
+
| 0.1334 | 2250 | 0.0 | - |
|
218 |
+
| 0.1364 | 2300 | 0.0001 | - |
|
219 |
+
| 0.1394 | 2350 | 0.0002 | - |
|
220 |
+
| 0.1423 | 2400 | 0.0 | - |
|
221 |
+
| 0.1453 | 2450 | 0.0 | - |
|
222 |
+
| 0.1482 | 2500 | 0.0589 | - |
|
223 |
+
| 0.1512 | 2550 | 0.0036 | - |
|
224 |
+
| 0.1542 | 2600 | 0.0013 | - |
|
225 |
+
| 0.1571 | 2650 | 0.0 | - |
|
226 |
+
| 0.1601 | 2700 | 0.0001 | - |
|
227 |
+
| 0.1631 | 2750 | 0.0004 | - |
|
228 |
+
| 0.1660 | 2800 | 0.0 | - |
|
229 |
+
| 0.1690 | 2850 | 0.0002 | - |
|
230 |
+
| 0.1720 | 2900 | 0.0096 | - |
|
231 |
+
| 0.1749 | 2950 | 0.0 | - |
|
232 |
+
| 0.1779 | 3000 | 0.0 | - |
|
233 |
+
| 0.1809 | 3050 | 0.0001 | - |
|
234 |
+
| 0.1838 | 3100 | 0.0 | - |
|
235 |
+
| 0.1868 | 3150 | 0.0001 | - |
|
236 |
+
| 0.1898 | 3200 | 0.0001 | - |
|
237 |
+
| 0.1927 | 3250 | 0.0 | - |
|
238 |
+
| 0.1957 | 3300 | 0.0 | - |
|
239 |
+
| 0.1986 | 3350 | 0.0001 | - |
|
240 |
+
| 0.2016 | 3400 | 0.0 | - |
|
241 |
+
| 0.2046 | 3450 | 0.0002 | - |
|
242 |
+
| 0.2075 | 3500 | 0.0 | - |
|
243 |
+
| 0.2105 | 3550 | 0.0 | - |
|
244 |
+
| 0.2135 | 3600 | 0.0001 | - |
|
245 |
+
| 0.2164 | 3650 | 0.0 | - |
|
246 |
+
| 0.2194 | 3700 | 0.0 | - |
|
247 |
+
| 0.2224 | 3750 | 0.0001 | - |
|
248 |
+
| 0.2253 | 3800 | 0.0 | - |
|
249 |
+
| 0.2283 | 3850 | 0.0 | - |
|
250 |
+
| 0.2313 | 3900 | 0.0 | - |
|
251 |
+
| 0.2342 | 3950 | 0.0 | - |
|
252 |
+
| 0.2372 | 4000 | 0.0 | - |
|
253 |
+
| 0.2402 | 4050 | 0.0 | - |
|
254 |
+
| 0.2431 | 4100 | 0.0 | - |
|
255 |
+
| 0.2461 | 4150 | 0.0 | - |
|
256 |
+
| 0.2491 | 4200 | 0.0 | - |
|
257 |
+
| 0.2520 | 4250 | 0.0 | - |
|
258 |
+
| 0.2550 | 4300 | 0.0 | - |
|
259 |
+
| 0.2579 | 4350 | 0.0 | - |
|
260 |
+
| 0.2609 | 4400 | 0.0 | - |
|
261 |
+
| 0.2639 | 4450 | 0.0 | - |
|
262 |
+
| 0.2668 | 4500 | 0.0 | - |
|
263 |
+
| 0.2698 | 4550 | 0.0 | - |
|
264 |
+
| 0.2728 | 4600 | 0.0 | - |
|
265 |
+
| 0.2757 | 4650 | 0.0 | - |
|
266 |
+
| 0.2787 | 4700 | 0.0 | - |
|
267 |
+
| 0.2817 | 4750 | 0.0 | - |
|
268 |
+
| 0.2846 | 4800 | 0.0 | - |
|
269 |
+
| 0.2876 | 4850 | 0.0001 | - |
|
270 |
+
| 0.2906 | 4900 | 0.0071 | - |
|
271 |
+
| 0.2935 | 4950 | 0.1151 | - |
|
272 |
+
| 0.2965 | 5000 | 0.0055 | - |
|
273 |
+
| 0.2995 | 5050 | 0.0005 | - |
|
274 |
+
| 0.3024 | 5100 | 0.0041 | - |
|
275 |
+
| 0.3054 | 5150 | 0.0001 | - |
|
276 |
+
| 0.3083 | 5200 | 0.0003 | - |
|
277 |
+
| 0.3113 | 5250 | 0.0001 | - |
|
278 |
+
| 0.3143 | 5300 | 0.0 | - |
|
279 |
+
| 0.3172 | 5350 | 0.0001 | - |
|
280 |
+
| 0.3202 | 5400 | 0.0 | - |
|
281 |
+
| 0.3232 | 5450 | 0.0 | - |
|
282 |
+
| 0.3261 | 5500 | 0.0 | - |
|
283 |
+
| 0.3291 | 5550 | 0.0 | - |
|
284 |
+
| 0.3321 | 5600 | 0.0 | - |
|
285 |
+
| 0.3350 | 5650 | 0.0 | - |
|
286 |
+
| 0.3380 | 5700 | 0.0 | - |
|
287 |
+
| 0.3410 | 5750 | 0.0 | - |
|
288 |
+
| 0.3439 | 5800 | 0.0 | - |
|
289 |
+
| 0.3469 | 5850 | 0.0 | - |
|
290 |
+
| 0.3499 | 5900 | 0.0 | - |
|
291 |
+
| 0.3528 | 5950 | 0.0 | - |
|
292 |
+
| 0.3558 | 6000 | 0.0 | - |
|
293 |
+
| 0.3588 | 6050 | 0.0 | - |
|
294 |
+
| 0.3617 | 6100 | 0.0 | - |
|
295 |
+
| 0.3647 | 6150 | 0.0 | - |
|
296 |
+
| 0.3676 | 6200 | 0.0 | - |
|
297 |
+
| 0.3706 | 6250 | 0.0 | - |
|
298 |
+
| 0.3736 | 6300 | 0.0 | - |
|
299 |
+
| 0.3765 | 6350 | 0.0 | - |
|
300 |
+
| 0.3795 | 6400 | 0.0 | - |
|
301 |
+
| 0.3825 | 6450 | 0.0 | - |
|
302 |
+
| 0.3854 | 6500 | 0.0 | - |
|
303 |
+
| 0.3884 | 6550 | 0.0 | - |
|
304 |
+
| 0.3914 | 6600 | 0.0 | - |
|
305 |
+
| 0.3943 | 6650 | 0.0 | - |
|
306 |
+
| 0.3973 | 6700 | 0.0 | - |
|
307 |
+
| 0.4003 | 6750 | 0.0 | - |
|
308 |
+
| 0.4032 | 6800 | 0.0 | - |
|
309 |
+
| 0.4062 | 6850 | 0.0 | - |
|
310 |
+
| 0.4092 | 6900 | 0.0 | - |
|
311 |
+
| 0.4121 | 6950 | 0.0 | - |
|
312 |
+
| 0.4151 | 7000 | 0.0 | - |
|
313 |
+
| 0.4181 | 7050 | 0.0 | - |
|
314 |
+
| 0.4210 | 7100 | 0.0 | - |
|
315 |
+
| 0.4240 | 7150 | 0.0 | - |
|
316 |
+
| 0.4269 | 7200 | 0.0 | - |
|
317 |
+
| 0.4299 | 7250 | 0.0 | - |
|
318 |
+
| 0.4329 | 7300 | 0.0 | - |
|
319 |
+
| 0.4358 | 7350 | 0.0 | - |
|
320 |
+
| 0.4388 | 7400 | 0.0 | - |
|
321 |
+
| 0.4418 | 7450 | 0.0 | - |
|
322 |
+
| 0.4447 | 7500 | 0.0 | - |
|
323 |
+
| 0.4477 | 7550 | 0.0 | - |
|
324 |
+
| 0.4507 | 7600 | 0.0 | - |
|
325 |
+
| 0.4536 | 7650 | 0.0003 | - |
|
326 |
+
| 0.4566 | 7700 | 0.0 | - |
|
327 |
+
| 0.4596 | 7750 | 0.0 | - |
|
328 |
+
| 0.4625 | 7800 | 0.0 | - |
|
329 |
+
| 0.4655 | 7850 | 0.0 | - |
|
330 |
+
| 0.4685 | 7900 | 0.0 | - |
|
331 |
+
| 0.4714 | 7950 | 0.0 | - |
|
332 |
+
| 0.4744 | 8000 | 0.0 | - |
|
333 |
+
| 0.4773 | 8050 | 0.0 | - |
|
334 |
+
| 0.4803 | 8100 | 0.0 | - |
|
335 |
+
| 0.4833 | 8150 | 0.0 | - |
|
336 |
+
| 0.4862 | 8200 | 0.0 | - |
|
337 |
+
| 0.4892 | 8250 | 0.0 | - |
|
338 |
+
| 0.4922 | 8300 | 0.0 | - |
|
339 |
+
| 0.4951 | 8350 | 0.0 | - |
|
340 |
+
| 0.4981 | 8400 | 0.0 | - |
|
341 |
+
| 0.5011 | 8450 | 0.0 | - |
|
342 |
+
| 0.5040 | 8500 | 0.0 | - |
|
343 |
+
| 0.5070 | 8550 | 0.0 | - |
|
344 |
+
| 0.5100 | 8600 | 0.0 | - |
|
345 |
+
| 0.5129 | 8650 | 0.0 | - |
|
346 |
+
| 0.5159 | 8700 | 0.0 | - |
|
347 |
+
| 0.5189 | 8750 | 0.0 | - |
|
348 |
+
| 0.5218 | 8800 | 0.0 | - |
|
349 |
+
| 0.5248 | 8850 | 0.0 | - |
|
350 |
+
| 0.5278 | 8900 | 0.0 | - |
|
351 |
+
| 0.5307 | 8950 | 0.0 | - |
|
352 |
+
| 0.5337 | 9000 | 0.0 | - |
|
353 |
+
| 0.5366 | 9050 | 0.0 | - |
|
354 |
+
| 0.5396 | 9100 | 0.0 | - |
|
355 |
+
| 0.5426 | 9150 | 0.0 | - |
|
356 |
+
| 0.5455 | 9200 | 0.0 | - |
|
357 |
+
| 0.5485 | 9250 | 0.0 | - |
|
358 |
+
| 0.5515 | 9300 | 0.0 | - |
|
359 |
+
| 0.5544 | 9350 | 0.0 | - |
|
360 |
+
| 0.5574 | 9400 | 0.0 | - |
|
361 |
+
| 0.5604 | 9450 | 0.0 | - |
|
362 |
+
| 0.5633 | 9500 | 0.0 | - |
|
363 |
+
| 0.5663 | 9550 | 0.0 | - |
|
364 |
+
| 0.5693 | 9600 | 0.0 | - |
|
365 |
+
| 0.5722 | 9650 | 0.0 | - |
|
366 |
+
| 0.5752 | 9700 | 0.0 | - |
|
367 |
+
| 0.5782 | 9750 | 0.0 | - |
|
368 |
+
| 0.5811 | 9800 | 0.0 | - |
|
369 |
+
| 0.5841 | 9850 | 0.0 | - |
|
370 |
+
| 0.5870 | 9900 | 0.0 | - |
|
371 |
+
| 0.5900 | 9950 | 0.0 | - |
|
372 |
+
| 0.5930 | 10000 | 0.0 | - |
|
373 |
+
| 0.5959 | 10050 | 0.0 | - |
|
374 |
+
| 0.5989 | 10100 | 0.0 | - |
|
375 |
+
| 0.6019 | 10150 | 0.0 | - |
|
376 |
+
| 0.6048 | 10200 | 0.0 | - |
|
377 |
+
| 0.6078 | 10250 | 0.0 | - |
|
378 |
+
| 0.6108 | 10300 | 0.0 | - |
|
379 |
+
| 0.6137 | 10350 | 0.0 | - |
|
380 |
+
| 0.6167 | 10400 | 0.0 | - |
|
381 |
+
| 0.6197 | 10450 | 0.0 | - |
|
382 |
+
| 0.6226 | 10500 | 0.0 | - |
|
383 |
+
| 0.6256 | 10550 | 0.0 | - |
|
384 |
+
| 0.6286 | 10600 | 0.0 | - |
|
385 |
+
| 0.6315 | 10650 | 0.0 | - |
|
386 |
+
| 0.6345 | 10700 | 0.0 | - |
|
387 |
+
| 0.6375 | 10750 | 0.0 | - |
|
388 |
+
| 0.6404 | 10800 | 0.0 | - |
|
389 |
+
| 0.6434 | 10850 | 0.0 | - |
|
390 |
+
| 0.6463 | 10900 | 0.0 | - |
|
391 |
+
| 0.6493 | 10950 | 0.0 | - |
|
392 |
+
| 0.6523 | 11000 | 0.0 | - |
|
393 |
+
| 0.6552 | 11050 | 0.0 | - |
|
394 |
+
| 0.6582 | 11100 | 0.0 | - |
|
395 |
+
| 0.6612 | 11150 | 0.0 | - |
|
396 |
+
| 0.6641 | 11200 | 0.0 | - |
|
397 |
+
| 0.6671 | 11250 | 0.0 | - |
|
398 |
+
| 0.6701 | 11300 | 0.0 | - |
|
399 |
+
| 0.6730 | 11350 | 0.0 | - |
|
400 |
+
| 0.6760 | 11400 | 0.0 | - |
|
401 |
+
| 0.6790 | 11450 | 0.0 | - |
|
402 |
+
| 0.6819 | 11500 | 0.0 | - |
|
403 |
+
| 0.6849 | 11550 | 0.0 | - |
|
404 |
+
| 0.6879 | 11600 | 0.0 | - |
|
405 |
+
| 0.6908 | 11650 | 0.0 | - |
|
406 |
+
| 0.6938 | 11700 | 0.0 | - |
|
407 |
+
| 0.6968 | 11750 | 0.0 | - |
|
408 |
+
| 0.6997 | 11800 | 0.0 | - |
|
409 |
+
| 0.7027 | 11850 | 0.0 | - |
|
410 |
+
| 0.7056 | 11900 | 0.0 | - |
|
411 |
+
| 0.7086 | 11950 | 0.0 | - |
|
412 |
+
| 0.7116 | 12000 | 0.0 | - |
|
413 |
+
| 0.7145 | 12050 | 0.0 | - |
|
414 |
+
| 0.7175 | 12100 | 0.0 | - |
|
415 |
+
| 0.7205 | 12150 | 0.0 | - |
|
416 |
+
| 0.7234 | 12200 | 0.0 | - |
|
417 |
+
| 0.7264 | 12250 | 0.0 | - |
|
418 |
+
| 0.7294 | 12300 | 0.0 | - |
|
419 |
+
| 0.7323 | 12350 | 0.0 | - |
|
420 |
+
| 0.7353 | 12400 | 0.0 | - |
|
421 |
+
| 0.7383 | 12450 | 0.0 | - |
|
422 |
+
| 0.7412 | 12500 | 0.0 | - |
|
423 |
+
| 0.7442 | 12550 | 0.0 | - |
|
424 |
+
| 0.7472 | 12600 | 0.0 | - |
|
425 |
+
| 0.7501 | 12650 | 0.0 | - |
|
426 |
+
| 0.7531 | 12700 | 0.0 | - |
|
427 |
+
| 0.7560 | 12750 | 0.0 | - |
|
428 |
+
| 0.7590 | 12800 | 0.0 | - |
|
429 |
+
| 0.7620 | 12850 | 0.0 | - |
|
430 |
+
| 0.7649 | 12900 | 0.0 | - |
|
431 |
+
| 0.7679 | 12950 | 0.0 | - |
|
432 |
+
| 0.7709 | 13000 | 0.0 | - |
|
433 |
+
| 0.7738 | 13050 | 0.0 | - |
|
434 |
+
| 0.7768 | 13100 | 0.0 | - |
|
435 |
+
| 0.7798 | 13150 | 0.0 | - |
|
436 |
+
| 0.7827 | 13200 | 0.0 | - |
|
437 |
+
| 0.7857 | 13250 | 0.0 | - |
|
438 |
+
| 0.7887 | 13300 | 0.0 | - |
|
439 |
+
| 0.7916 | 13350 | 0.0 | - |
|
440 |
+
| 0.7946 | 13400 | 0.0 | - |
|
441 |
+
| 0.7976 | 13450 | 0.0 | - |
|
442 |
+
| 0.8005 | 13500 | 0.0 | - |
|
443 |
+
| 0.8035 | 13550 | 0.0 | - |
|
444 |
+
| 0.8065 | 13600 | 0.0 | - |
|
445 |
+
| 0.8094 | 13650 | 0.0 | - |
|
446 |
+
| 0.8124 | 13700 | 0.0 | - |
|
447 |
+
| 0.8153 | 13750 | 0.0 | - |
|
448 |
+
| 0.8183 | 13800 | 0.0 | - |
|
449 |
+
| 0.8213 | 13850 | 0.0 | - |
|
450 |
+
| 0.8242 | 13900 | 0.0 | - |
|
451 |
+
| 0.8272 | 13950 | 0.0 | - |
|
452 |
+
| 0.8302 | 14000 | 0.0 | - |
|
453 |
+
| 0.8331 | 14050 | 0.0 | - |
|
454 |
+
| 0.8361 | 14100 | 0.0 | - |
|
455 |
+
| 0.8391 | 14150 | 0.0 | - |
|
456 |
+
| 0.8420 | 14200 | 0.0 | - |
|
457 |
+
| 0.8450 | 14250 | 0.0 | - |
|
458 |
+
| 0.8480 | 14300 | 0.0 | - |
|
459 |
+
| 0.8509 | 14350 | 0.0 | - |
|
460 |
+
| 0.8539 | 14400 | 0.0 | - |
|
461 |
+
| 0.8569 | 14450 | 0.0 | - |
|
462 |
+
| 0.8598 | 14500 | 0.0 | - |
|
463 |
+
| 0.8628 | 14550 | 0.0 | - |
|
464 |
+
| 0.8657 | 14600 | 0.0 | - |
|
465 |
+
| 0.8687 | 14650 | 0.0 | - |
|
466 |
+
| 0.8717 | 14700 | 0.0 | - |
|
467 |
+
| 0.8746 | 14750 | 0.0 | - |
|
468 |
+
| 0.8776 | 14800 | 0.0 | - |
|
469 |
+
| 0.8806 | 14850 | 0.0 | - |
|
470 |
+
| 0.8835 | 14900 | 0.0 | - |
|
471 |
+
| 0.8865 | 14950 | 0.0 | - |
|
472 |
+
| 0.8895 | 15000 | 0.0 | - |
|
473 |
+
| 0.8924 | 15050 | 0.0 | - |
|
474 |
+
| 0.8954 | 15100 | 0.0 | - |
|
475 |
+
| 0.8984 | 15150 | 0.0 | - |
|
476 |
+
| 0.9013 | 15200 | 0.0 | - |
|
477 |
+
| 0.9043 | 15250 | 0.0 | - |
|
478 |
+
| 0.9073 | 15300 | 0.0 | - |
|
479 |
+
| 0.9102 | 15350 | 0.0 | - |
|
480 |
+
| 0.9132 | 15400 | 0.0 | - |
|
481 |
+
| 0.9162 | 15450 | 0.0 | - |
|
482 |
+
| 0.9191 | 15500 | 0.0 | - |
|
483 |
+
| 0.9221 | 15550 | 0.0 | - |
|
484 |
+
| 0.9250 | 15600 | 0.0 | - |
|
485 |
+
| 0.9280 | 15650 | 0.0 | - |
|
486 |
+
| 0.9310 | 15700 | 0.0 | - |
|
487 |
+
| 0.9339 | 15750 | 0.0 | - |
|
488 |
+
| 0.9369 | 15800 | 0.0 | - |
|
489 |
+
| 0.9399 | 15850 | 0.0 | - |
|
490 |
+
| 0.9428 | 15900 | 0.0 | - |
|
491 |
+
| 0.9458 | 15950 | 0.0 | - |
|
492 |
+
| 0.9488 | 16000 | 0.0 | - |
|
493 |
+
| 0.9517 | 16050 | 0.0 | - |
|
494 |
+
| 0.9547 | 16100 | 0.0 | - |
|
495 |
+
| 0.9577 | 16150 | 0.0 | - |
|
496 |
+
| 0.9606 | 16200 | 0.0 | - |
|
497 |
+
| 0.9636 | 16250 | 0.0 | - |
|
498 |
+
| 0.9666 | 16300 | 0.0 | - |
|
499 |
+
| 0.9695 | 16350 | 0.0 | - |
|
500 |
+
| 0.9725 | 16400 | 0.0 | - |
|
501 |
+
| 0.9755 | 16450 | 0.0 | - |
|
502 |
+
| 0.9784 | 16500 | 0.0 | - |
|
503 |
+
| 0.9814 | 16550 | 0.0 | - |
|
504 |
+
| 0.9843 | 16600 | 0.0 | - |
|
505 |
+
| 0.9873 | 16650 | 0.0 | - |
|
506 |
+
| 0.9903 | 16700 | 0.0 | - |
|
507 |
+
| 0.9932 | 16750 | 0.0 | - |
|
508 |
+
| 0.9962 | 16800 | 0.0 | - |
|
509 |
+
| 0.9992 | 16850 | 0.0 | - |
|
510 |
+
|
511 |
+
### Framework Versions
|
512 |
+
- Python: 3.10.12
|
513 |
+
- SetFit: 1.0.3
|
514 |
+
- Sentence Transformers: 2.7.0
|
515 |
+
- spaCy: 3.7.4
|
516 |
+
- Transformers: 4.40.1
|
517 |
+
- PyTorch: 2.2.1+cu121
|
518 |
+
- Datasets: 2.19.0
|
519 |
+
- Tokenizers: 0.19.1
|
520 |
+
|
521 |
+
## Citation
|
522 |
+
|
523 |
+
### BibTeX
|
524 |
+
```bibtex
|
525 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
526 |
+
doi = {10.48550/ARXIV.2209.11055},
|
527 |
+
url = {https://arxiv.org/abs/2209.11055},
|
528 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
529 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
530 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
531 |
+
publisher = {arXiv},
|
532 |
+
year = {2022},
|
533 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
534 |
+
}
|
535 |
+
```
|
536 |
+
|
537 |
+
<!--
|
538 |
+
## Glossary
|
539 |
+
|
540 |
+
*Clearly define terms in order to be accessible across audiences.*
|
541 |
+
-->
|
542 |
+
|
543 |
+
<!--
|
544 |
+
## Model Card Authors
|
545 |
+
|
546 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
547 |
+
-->
|
548 |
+
|
549 |
+
<!--
|
550 |
+
## Model Card Contact
|
551 |
+
|
552 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
553 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.40.1",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"spacy_model": "en_core_web_sm",
|
3 |
+
"span_context": 3,
|
4 |
+
"labels": [
|
5 |
+
"negative",
|
6 |
+
"neutral",
|
7 |
+
"positive"
|
8 |
+
],
|
9 |
+
"normalize_embeddings": false
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a911235a0bf27fb25af20dd532fc3a551dac8177eac73abe411bbbc85ca0bfd
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:486376c4f67873eedbaf34ad89caa44f09c5f238a67f3948ed14a42c78ab237c
|
3 |
+
size 25559
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 512,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|