File size: 1,993 Bytes
c0118f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- de
license: apache-2.0
tags:
- sbb-asr
- generated_from_trainer
datasets:
- marccgrau/sbbdata_allSNR
metrics:
- wer
model-index:
- name: Whisper Small German SBB all SNR - v6
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: SBB Dataset 05.01.2023
type: marccgrau/sbbdata_allSNR
args: 'config: German, split: train, test, val'
metrics:
- name: Wer
type: wer
value: 0.02663284717818643
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small German SBB all SNR - v6
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the SBB Dataset 05.01.2023 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0426
- Wer: 0.0266
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 400
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.7233 | 0.04 | 100 | 0.4161 | 0.2232 |
| 0.1932 | 0.09 | 200 | 0.0665 | 0.0361 |
| 0.0615 | 0.13 | 300 | 0.0666 | 0.0361 |
| 0.0677 | 0.18 | 400 | 0.0426 | 0.0266 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.12.1
|