File size: 4,077 Bytes
5f4a039
d292306
5f4a039
d292306
 
 
 
 
 
 
 
5f4a039
 
d292306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
---

# Margin-aware Preference Optimization for Aligning Diffusion Models without Reference

<div align="center">
<img src="https://github.com/mapo-t2i/mapo/blob/main/assets/mapo_overview.png?raw=true" width=750/>
</div><br>

We propose **MaPO**, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper [here] (TODO).


## Developed by

* Jiwoo Hong<sup>*</sup> (KAIST AI)
* Sayak Paul<sup>*</sup> (Hugging Face)
* Noah Lee (KAIST AI)
* Kashif Rasul (Hugging Face)
* James Thorne (KAIST AI)
* Jongheon Jeong (Korea University)

## Dataset

This model was fine-tuned from [Stable Diffusion XL](https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0) on the [yuvalkirstain/pickapic_v2](mhttps://huggingface.co./datasets/yuvalkirstain/pickapic_v2) dataset. 

## Training Code

Refer to our code repository [here](https://github.com/mapo-t2i/mapo). 

## Results

Below we report some quantitative metrics and use them to compare MaPO to existing models: 

<style>
    table {
        width: 100%;
        border-collapse: collapse;
    }
    th, td {
        border: 1px solid #000;
        padding: 8px;
        text-align: center;
    }
    th {
        background-color: #808080;
    }
    .ours {
        font-style: italic;
    }
</style>

<table>
    <caption>Average score for Aesthetic, HPS v2.1, and PickScore</caption>
    <thead>
        <tr>
            <th></th>
            <th>Aesthetic</th>
            <th>HPS v2.1</th>
            <th>Pickscore</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>SDXL</td>
            <td>6.03</td>
            <td>30.0</td>
            <td>22.4</td>
        </tr>
        <tr>
            <td>SFT<sub>Chosen</sub></td>
            <td>5.95</td>
            <td>29.6</td>
            <td>22.0</td>
        </tr>
        <tr>
            <td>Diffusion-DPO</td>
            <td>6.03</td>
            <td>31.1</td>
            <td>22.7</td>
        </tr>
        <tr class="ours">
            <td>MaPO (Ours)</td>
            <td>6.17</td>
            <td>31.2</td>
            <td>22.5</td>
        </tr>
    </tbody>
</table>


We evaluated this checkpoint in the Imgsys public benchmark. MaPO was able to outperform or match 21 out of 25 state-of-the-art text-to-image diffusion models by ranking 7th on the leaderboard at the time of writing, compared to Diffusion-DPO’s 20th place, while also consuming 14.5% less wall-clock training time on adapting Pick-a-Pic v2. We appreciate the imgsys team for helping us get the human preference data.

<div align="center">
<img src="https://mapo-t2i.github.io/static/images/imgsys.png" width=750/>
</div>


## Inference

```python
from diffusers import DiffusionPipeline, AutoencoderKL, UNet2DConditionModel
import torch 

sdxl_id = "stabilityai/stable-diffusion-xl-base-1.0"
vae_id = "madebyollin/sdxl-vae-fp16-fix"
unet_id = "mapo-t2i/mapo-beta"

vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained(unet_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(sdxl_id, vae=vae, unet=unet, torch_dtype=torch.float16).to("cuda")

prompt = "An abstract portrait consisting of bold, flowing brushstrokes against a neutral background."
image = pipeline(prompt=prompt, num_inference_steps=30).images[0]
```

For qualitative results, please visit our [project website](https://mapo-t2i.github.io/).

## Citation

```bibtex
@misc{todo,
    title={Margin-aware Preference Optimization for Aligning Diffusion Models without Reference}, 
    author={Jiwoo Hong and Sayak Paul and Noah Lee and Kashif Rasuland James Thorne and Jongheon Jeong},
    year={2024},
    eprint={todo},
    archivePrefix={arXiv},
    primaryClass={cs.CV,cs.LG}
}
```