--- license: apache-2.0 base_model: 100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-spa_saloon_classification-spa-saloon results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9825783972125436 --- # swin-tiny-patch4-window7-224-spa_saloon_classification-spa-saloon This model is a fine-tuned version of [100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification](https://huggingface.co./100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0797 - Accuracy: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2585 | 0.99 | 20 | 0.1616 | 0.9408 | | 0.2042 | 1.98 | 40 | 0.2162 | 0.9338 | | 0.1464 | 2.96 | 60 | 0.1001 | 0.9721 | | 0.1621 | 4.0 | 81 | 0.0915 | 0.9791 | | 0.1469 | 4.99 | 101 | 0.0797 | 0.9826 | | 0.1272 | 5.98 | 121 | 0.0753 | 0.9756 | | 0.0985 | 6.96 | 141 | 0.0860 | 0.9791 | | 0.1013 | 8.0 | 162 | 0.1178 | 0.9652 | | 0.111 | 8.99 | 182 | 0.1036 | 0.9652 | | 0.0737 | 9.88 | 200 | 0.0982 | 0.9686 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0