--- license: apache-2.0 base_model: 100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-spa_saloon_classification-spa-saloon results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9930313588850174 --- # swin-tiny-patch4-window7-224-spa_saloon_classification-spa-saloon This model is a fine-tuned version of [100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification](https://huggingface.co./100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0408 - Accuracy: 0.9930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2637 | 0.99 | 20 | 0.1274 | 0.9443 | | 0.2582 | 1.98 | 40 | 0.0937 | 0.9756 | | 0.161 | 2.96 | 60 | 0.0924 | 0.9582 | | 0.1535 | 4.0 | 81 | 0.0612 | 0.9861 | | 0.1347 | 4.99 | 101 | 0.0536 | 0.9791 | | 0.1155 | 5.98 | 121 | 0.0408 | 0.9930 | | 0.1306 | 6.96 | 141 | 0.0417 | 0.9930 | | 0.1017 | 8.0 | 162 | 0.0380 | 0.9895 | | 0.0859 | 8.99 | 182 | 0.0417 | 0.9895 | | 0.0897 | 9.88 | 200 | 0.0393 | 0.9895 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0