File size: 2,558 Bytes
7d7da7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75fd85c
7d7da7c
 
 
 
 
 
 
 
 
75fd85c
 
7d7da7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4c7bb9
 
 
 
 
 
 
 
 
 
7d7da7c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: 100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-spa_saloon_classification-spa-saloon
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9930313588850174
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-spa_saloon_classification-spa-saloon

This model is a fine-tuned version of [100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification](https://huggingface.co./100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0408
- Accuracy: 0.9930

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2637        | 0.99  | 20   | 0.1274          | 0.9443   |
| 0.2582        | 1.98  | 40   | 0.0937          | 0.9756   |
| 0.161         | 2.96  | 60   | 0.0924          | 0.9582   |
| 0.1535        | 4.0   | 81   | 0.0612          | 0.9861   |
| 0.1347        | 4.99  | 101  | 0.0536          | 0.9791   |
| 0.1155        | 5.98  | 121  | 0.0408          | 0.9930   |
| 0.1306        | 6.96  | 141  | 0.0417          | 0.9930   |
| 0.1017        | 8.0   | 162  | 0.0380          | 0.9895   |
| 0.0859        | 8.99  | 182  | 0.0417          | 0.9895   |
| 0.0897        | 9.88  | 200  | 0.0393          | 0.9895   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0