--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-blank_img results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9777131782945736 --- # swin-tiny-patch4-window7-224-blank_img This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0748 - Accuracy: 0.9777 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0898 | 0.99 | 72 | 0.1245 | 0.9428 | | 0.152 | 1.99 | 145 | 0.0811 | 0.9748 | | 0.1235 | 3.0 | 218 | 0.0958 | 0.9700 | | 0.1065 | 4.0 | 291 | 0.0748 | 0.9777 | | 0.1115 | 4.99 | 363 | 0.0947 | 0.9729 | | 0.0804 | 5.99 | 436 | 0.0888 | 0.9758 | | 0.0722 | 7.0 | 509 | 0.0827 | 0.9758 | | 0.061 | 8.0 | 582 | 0.0899 | 0.9758 | | 0.0706 | 8.99 | 654 | 0.0916 | 0.9758 | | 0.0633 | 9.9 | 720 | 0.0937 | 0.9758 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0