--- license: apache-2.0 base_model: mansee/swin-tiny-patch4-window7-224-blank_img tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-blank_img results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9738372093023255 --- # swin-tiny-patch4-window7-224-blank_img This model is a fine-tuned version of [mansee/swin-tiny-patch4-window7-224-blank_img](https://huggingface.co./mansee/swin-tiny-patch4-window7-224-blank_img) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1016 - Accuracy: 0.9738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0502 | 0.99 | 72 | 0.1300 | 0.9651 | | 0.1107 | 1.99 | 145 | 0.1023 | 0.9729 | | 0.0917 | 3.0 | 218 | 0.1277 | 0.9651 | | 0.1022 | 4.0 | 291 | 0.1258 | 0.9719 | | 0.0888 | 4.95 | 360 | 0.1016 | 0.9738 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0