--- license: apache-2.0 base_model: facebook/dinov2-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: dinov2-base-finetuned-oxford results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9299317110705011 --- # dinov2-base-finetuned-oxford This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co./facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2714 - Accuracy: 0.9299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 9 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6782 | 1.0 | 15460 | 0.4996 | 0.8013 | | 0.4513 | 2.0 | 30920 | 0.3186 | 0.8837 | | 0.2692 | 3.0 | 46380 | 0.2714 | 0.9299 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.19.1