--- license: apache-2.0 base_model: facebook/dinov2-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: dinov2-base-finetuned-oxford results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9339596186203029 --- # dinov2-base-finetuned-oxford This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co./facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2573 - Accuracy: 0.9340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6069 | 1.0 | 6167 | 0.3864 | 0.8464 | | 0.3116 | 2.0 | 12334 | 0.2723 | 0.8988 | | 0.1791 | 3.0 | 18501 | 0.2573 | 0.9340 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.19.1