mansee commited on
Commit
b66059e
1 Parent(s): feb04fe

Model save

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9339596186203029
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.2573
36
- - Accuracy: 0.9340
37
 
38
  ## Model description
39
 
@@ -53,11 +53,11 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
- - train_batch_size: 4
57
- - eval_batch_size: 4
58
  - seed: 42
59
- - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 16
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
@@ -67,9 +67,9 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
70
- | 0.6069 | 1.0 | 6167 | 0.3864 | 0.8464 |
71
- | 0.3116 | 2.0 | 12334 | 0.2723 | 0.8988 |
72
- | 0.1791 | 3.0 | 18501 | 0.2573 | 0.9340 |
73
 
74
 
75
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9299317110705011
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.2714
36
+ - Accuracy: 0.9299
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
+ - train_batch_size: 3
57
+ - eval_batch_size: 3
58
  - seed: 42
59
+ - gradient_accumulation_steps: 3
60
+ - total_train_batch_size: 9
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
 
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
70
+ | 0.6782 | 1.0 | 15460 | 0.4996 | 0.8013 |
71
+ | 0.4513 | 2.0 | 30920 | 0.3186 | 0.8837 |
72
+ | 0.2692 | 3.0 | 46380 | 0.2714 | 0.9299 |
73
 
74
 
75
  ### Framework versions