--- license: mit datasets: - iamplus/LLama2-SFT-Data - iamplus/Open_Platypus_Orca - iamplus/Orca - iamplus/Conversational_Data --- **Description :** This model is trained on a mix of Orca data and Open Source + Closed Multi-turn Conversation data to create a better reasoning model which is capable of holding multi-turn conversations as well. The Dataset split description, Prompt description as well as Training Parameters are given below. **Prompt Description :** The prompt template for the first turn looks like this: ``` [INST] <> {{ system_prompt }} <> {{ user_message }} [/INST] ``` The prompt template for the multi-turn conversation looks like this: ``` [INST] <> {{ system_prompt }} <> {{ user_msg_1 }} [/INST] {{ model_answer_1 }} [INST] {{ user_msg_2 }} [/INST] ``` This model follows the official Meta's chat model Prompt format. Please refer here : https://huggingface.co./blog/llama2#how-to-prompt-llama-2 on how to prompt the model for single/multi-turn conversations. **Base model :** meta-llama/Llama-2-13b-hf **Data :** 1. 1M Orca dara (Gpt-4 Orca data - OpenOrca) 2. 1.7M chat data (includes OpenAssistant Chat data, Ultrachat, and many more open source Chat Datasets) 3. 30k OpenPlatypus data **Training Params :** ``` Number of Epochs : 2 Batch Size : 128 Sequence Length : 4096 Learning Rate : 2e-5 (Cosine) Weight Decay : 0.1 Gradient Clipping : 1.0 Gamma : 0.85 beta_1 : 0.9 beta_2 : 0.95 eps : 1e-5 Precision : bf16 Optimizer : Any Precision AdamW Optimizer ```