--- language: - en tags: - Medicine datasets: - epfl-llm/guidelines license: ms-pl base_model: microsoft/phi-2 --- # Model Card for Model ID phi-2-meditron is a finetuned version of [`epfl-llm/meditron-7b`](https://huggingface.co./epfl-llm/meditron-7b) using SFT Training on the Meditron Dataset. This model can answer information about different excplicit ideas in medicine (see [`epfl-llm/meditron-7b`](https://huggingface.co./epfl-llm/meditron-7b) for more info) ### Model Description - **Finetuned by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/) - **Language(s) (NLP):** English - **Finetuned from model:** [`microsoft/phi-2`](https://huggingface.co./microsoft/phi-2) ### Prompt Template ``` ### Instruction: (without the <>) ### Response: ``` ## How to Get Started with the Model Use the code sample provided in the original post to interact with the model. ```python from transformers import AutoTokenizer,AutoModelForCausalLM model_id = "malhajar/phi-2-meditron" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.float16, trust_remote_code= True, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_id) question: "what is tract infection?" # For generating a response prompt = ''' ### Instruction: {question} ### Response:''' input_ids = tokenizer(prompt, return_tensors="pt").input_ids output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True, top_p=0.95) response = tokenizer.decode(output[0]) print(response) ```