File size: 5,069 Bytes
faccb86
 
 
a24bbb3
faccb86
 
acecb7f
 
6c2f3c1
a24bbb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faccb86
 
 
 
acecb7f
faccb86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a24bbb3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
language:
- en
license: llama2
tags:
- Medicine
datasets:
- yahma/alpaca-cleaned
base_model: epfl-llm/meditron-7b
model-index:
- name: meditron-7b-chat
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 50.77
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 75.37
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 40.49
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 48.56
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 73.16
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 9.17
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
      name: Open LLM Leaderboard
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
meditron-7b-chat is a finetuned version of [`epfl-llm/meditron-7b`](https://huggingface.co./epfl-llm/meditron-7b) using SFT Training on the Alpaca Dataset.
This model can answer information about different excplicit ideas in medicine (see [`epfl-llm/meditron-7b`](https://huggingface.co./epfl-llm/meditron-7b) for more info)

### Model Description

- **Finetuned by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/) 
- **Language(s) (NLP):** English
- **Finetuned from model:** [`epfl-llm/meditron-7b`](https://huggingface.co./epfl-llm/meditron-7b)

### Prompt Template
```
### Instruction:

<prompt> (without the <>)

### Response:
```


## How to Get Started with the Model

Use the code sample provided in the original post to interact with the model.
```python
from transformers import AutoTokenizer,AutoModelForCausalLM
 
model_id = "malhajar/meditron-7b-chat"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             torch_dtype=torch.float16,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_id)

question: "what is tract infection?"
# For generating a response
prompt = '''
### Instruction:
{question} 

### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
        top_p=0.95)
response = tokenizer.decode(output[0])

print(response)
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_malhajar__meditron-7b-chat)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |49.59|
|AI2 Reasoning Challenge (25-Shot)|50.77|
|HellaSwag (10-Shot)              |75.37|
|MMLU (5-Shot)                    |40.49|
|TruthfulQA (0-shot)              |48.56|
|Winogrande (5-shot)              |73.16|
|GSM8k (5-shot)                   | 9.17|