--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-multilingual-cased-finetuned-conllpp results: [] --- # bert-base-multilingual-cased-finetuned-conllpp This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co./bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0443 - Accuracy: 0.9850 - Precision: 0.9304 - Recall: 0.9357 - F1: 0.9330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0456 | 1.0 | 3093 | 0.0455 | 0.9804 | 0.9154 | 0.9097 | 0.9126 | | 0.0441 | 2.0 | 6186 | 0.0444 | 0.9846 | 0.9275 | 0.9316 | 0.9296 | | 0.0431 | 3.0 | 9279 | 0.0443 | 0.9850 | 0.9304 | 0.9357 | 0.9330 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1