PEFT
Safetensors
xinpeng commited on
Commit
3d4f9d1
·
verified ·
1 Parent(s): b701942

update model card

Browse files
Files changed (1) hide show
  1. README.md +62 -195
README.md CHANGED
@@ -1,201 +1,68 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
 
201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ license: apache-2.0
4
  ---
5
 
6
+ ### Framework versions
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ - PEFT 0.5.0
10
+ ---
11
 
12
+ # Model Card for MCQ-Classifier-MMLU-XYZ
13
+ MCQ-Classifier is a parameter-efficient finetuned 7B Mistral-7b-base-v0.1 to automatically detect the model answers to Multiple Choice Questions.
14
+
15
+ This model is trained on annotated model outputs to MMLU dataset. We collected responses from Llama2-7b-chat, Llama2-13b-chat and Mistral-7b-Inst-v0.2
16
+
17
+ For full details of this model please read our [paper](https://arxiv.org/abs/2404.08382).
18
+
19
+ ## "XYZ"
20
+ During our annotation phase, we noticed that models may not choose the available answer candiates but refuse to answer or claim "No correct answer available." Therefore, we consider other three cases "Refusal", "No correct answer", "I don't know"
21
+ and label them as "X", "Y", "Z".
22
+
23
+ Note that "I don't know" is an additional mode we assumed model could have. However, we didn't counter this behaviour during the entire annoation phase. Therefore, our classifier cannot identify "I don't know" cases. If you observe such behaviour of your model, feel free to continue fine-tune our classifiers, or even add more modes!
24
+
25
+ Also note that, if your data has "Refuse" in the options, such as "D. Refuse", our classifier will classify this as "Y".
26
+ We expicitly do so, because we ignore the difference between refusing to answer and chosing the refusal options. There are many cases where the model first refuse to answer then choose the option "D. Refuse", which makes it difficult to label.
27
+ You can use our another version of the classifer (EFG) which will only map the answer to available options.
28
+ ## Run the model
29
+ Your should construct your input into such format: model_reponse + references
30
+
31
+ For example:
32
+ ```
33
+ inputs = " Sure, I'm happy to help! The correct answer is:\n\nB. prolapsed stomas. \nReferences: \nA. high output stomas. \nB. retraction of the stoma. \nC. prolapsed stomas. \nD. herniation around the stoma. \nAnswer:"
34
+ ```
35
+ then feed it to the classifier:
36
+ ```python
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+ from peft import PeftModel, PeftConfig
39
+ config = PeftConfig.from_pretrained("mainlp/MCQ-Classifier-MMLU-XYZ")
40
+ base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
41
+ model = PeftModel.from_pretrained(base_model, "mainlp/MCQ-Classifier")
42
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
43
+ to_classify = f"""<s>[INST] Classify the response.{inputs} [/INST]"""
44
+ model_input = tokenizer(to_classify, return_tensors="pt")
45
+ output = merged_model.generate(**model_input, max_new_tokens=1, do_sample=False)
46
+ print(tokenizer.decode(output.sequences[0], skip_special_tokens=True))
47
+ ```
48
+
49
+ By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
50
+
51
+ ## Cite
52
+ ```
53
+ @article{wang2024my,
54
+ title={" My Answer is C": First-Token Probabilities Do Not Match Text Answers in Instruction-Tuned Language Models},
55
+ author={Wang, Xinpeng and Ma, Bolei and Hu, Chengzhi and Weber-Genzel, Leon and R{\"o}ttger, Paul and Kreuter, Frauke and Hovy, Dirk and Plank, Barbara},
56
+ journal={arXiv preprint arXiv:2402.14499},
57
+ year={2024}
58
+ }
59
+ ```
60
+
61
+ ```
62
+ @article{wang2024look,
63
+ title={Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think},
64
+ author={Wang, Xinpeng and Hu, Chengzhi and Ma, Bolei and R{\"o}ttger, Paul and Plank, Barbara},
65
+ journal={arXiv preprint arXiv:2404.08382},
66
+ year={2024}
67
+ }
68
+ ```