robinzixuan commited on
Commit
921b6e1
1 Parent(s): a59be4f

Upload 2 files

Browse files
Files changed (2) hide show
  1. configuration_vit.py +138 -0
  2. modeling_vit.py +1085 -0
configuration_vit.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ViT model configuration"""
16
+
17
+ from collections import OrderedDict
18
+ from typing import Mapping
19
+
20
+ from packaging import version
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.onnx import OnnxConfig
24
+ from transformers.utils import logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ class ViTConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`ViTModel`]. It is used to instantiate an ViT
33
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
+ defaults will yield a similar configuration to that of the ViT
35
+ [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) architecture.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ hidden_size (`int`, *optional*, defaults to 768):
43
+ Dimensionality of the encoder layers and the pooler layer.
44
+ num_hidden_layers (`int`, *optional*, defaults to 12):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 12):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ intermediate_size (`int`, *optional*, defaults to 3072):
49
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
50
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
51
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
52
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
53
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
54
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
55
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
56
+ The dropout ratio for the attention probabilities.
57
+ initializer_range (`float`, *optional*, defaults to 0.02):
58
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
59
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
60
+ The epsilon used by the layer normalization layers.
61
+ image_size (`int`, *optional*, defaults to 224):
62
+ The size (resolution) of each image.
63
+ patch_size (`int`, *optional*, defaults to 16):
64
+ The size (resolution) of each patch.
65
+ num_channels (`int`, *optional*, defaults to 3):
66
+ The number of input channels.
67
+ qkv_bias (`bool`, *optional*, defaults to `True`):
68
+ Whether to add a bias to the queries, keys and values.
69
+ encoder_stride (`int`, *optional*, defaults to 16):
70
+ Factor to increase the spatial resolution by in the decoder head for masked image modeling.
71
+
72
+ Example:
73
+
74
+ ```python
75
+ >>> from transformers import ViTConfig, ViTModel
76
+
77
+ >>> # Initializing a ViT vit-base-patch16-224 style configuration
78
+ >>> configuration = ViTConfig()
79
+
80
+ >>> # Initializing a model (with random weights) from the vit-base-patch16-224 style configuration
81
+ >>> model = ViTModel(configuration)
82
+
83
+ >>> # Accessing the model configuration
84
+ >>> configuration = model.config
85
+ ```"""
86
+
87
+ model_type = "vit"
88
+
89
+ def __init__(
90
+ self,
91
+ hidden_size=768,
92
+ num_hidden_layers=12,
93
+ num_attention_heads=12,
94
+ intermediate_size=3072,
95
+ hidden_act="gelu",
96
+ hidden_dropout_prob=0.0,
97
+ attention_probs_dropout_prob=0.0,
98
+ initializer_range=0.02,
99
+ layer_norm_eps=1e-12,
100
+ image_size=224,
101
+ patch_size=16,
102
+ num_channels=3,
103
+ qkv_bias=True,
104
+ encoder_stride=16,
105
+ **kwargs,
106
+ ):
107
+ super().__init__(**kwargs)
108
+
109
+ self.hidden_size = hidden_size
110
+ self.num_hidden_layers = num_hidden_layers
111
+ self.num_attention_heads = num_attention_heads
112
+ self.intermediate_size = intermediate_size
113
+ self.hidden_act = hidden_act
114
+ self.hidden_dropout_prob = hidden_dropout_prob
115
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
116
+ self.initializer_range = initializer_range
117
+ self.layer_norm_eps = layer_norm_eps
118
+ self.image_size = image_size
119
+ self.patch_size = patch_size
120
+ self.num_channels = num_channels
121
+ self.qkv_bias = qkv_bias
122
+ self.encoder_stride = encoder_stride
123
+
124
+
125
+ class ViTOnnxConfig(OnnxConfig):
126
+ torch_onnx_minimum_version = version.parse("1.11")
127
+
128
+ @property
129
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
130
+ return OrderedDict(
131
+ [
132
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
133
+ ]
134
+ )
135
+
136
+ @property
137
+ def atol_for_validation(self) -> float:
138
+ return 1e-4
modeling_vit.py ADDED
@@ -0,0 +1,1085 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch ViT model."""
16
+
17
+ import collections.abc
18
+ import math
19
+ from typing import Dict, List, Optional, Set, Tuple, Union
20
+ from functools import partial
21
+ from enum import Flag, auto
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
26
+ import numpy as np
27
+ from transformers.activations import ACT2FN
28
+ from transformers.modeling_outputs import (
29
+ BaseModelOutput,
30
+ BaseModelOutputWithPooling,
31
+ ImageClassifierOutput,
32
+ MaskedImageModelingOutput,
33
+ )
34
+ from transformers.modeling_utils import PreTrainedModel
35
+ from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
36
+ from transformers.utils import (
37
+ add_code_sample_docstrings,
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+ from .configuration_vit import ViTConfig
44
+
45
+
46
+ logger = logging.get_logger(__name__)
47
+
48
+ # General docstring
49
+ _CONFIG_FOR_DOC = "ViTConfig"
50
+
51
+ # Base docstring
52
+ _CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
53
+ _EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
54
+
55
+ # Image classification docstring
56
+ _IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
57
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
58
+
59
+
60
+
61
+
62
+ class BaseEnumOptions(Flag):
63
+ def __str__(self):
64
+ return self.name
65
+
66
+ @classmethod
67
+ def list_names(cls):
68
+ return [m.name for m in cls]
69
+ class AttentionGateType(BaseEnumOptions):
70
+ none = 0
71
+ unconditional_per_head = 1
72
+ conditional_per_head = 2
73
+ conditional_per_token = 3
74
+
75
+ def softmax_n_shifted_zeros(input: torch.Tensor, n: int, dim=-1) -> torch.Tensor:
76
+ """
77
+ $\text(softmax)_n(x_i) = exp(x_i) / (n + \sum_j exp(x_j))$
78
+
79
+ Note: softmax_n, with fixed input, is _not_ shift-symmetric when n != 0
80
+ """
81
+ # compute the maxes along the last dimension
82
+ input_maxes = input.max(dim=dim, keepdim=True).values
83
+ # shift the input to prevent overflow (and underflow in the denominator)
84
+ shifted_inputs = torch.subtract(input, input_maxes)
85
+ # compute the numerator and softmax_0 denominator using the shifted input
86
+ numerator = torch.exp(shifted_inputs)
87
+ original_denominator = numerator.sum(dim=dim, keepdim=True)
88
+ # we need to shift the zeros in the same way we shifted the inputs
89
+ shifted_zeros = torch.multiply(input_maxes, -1)
90
+ # and then add this contribution to the denominator
91
+ denominator = torch.add(original_denominator,
92
+ torch.multiply(torch.exp(shifted_zeros), n))
93
+ return torch.divide(numerator, denominator)
94
+ def logit(p, eps=1e-16):
95
+ p = np.clip(p, eps, 1 - eps)
96
+ return -np.log(1 / p - 1)
97
+
98
+ def softmax_1(input: torch.Tensor, dim=-1) -> torch.Tensor:
99
+ """
100
+ $\text(softmax)_n(x_i) = exp(x_i) / (1 + \sum_j exp(x_j))$
101
+ """
102
+ return softmax_n_shifted_zeros(input, 1, dim=dim)
103
+
104
+
105
+ def clipped_softmax(data, dim=1, eta=1.1, gamma=-0.1, **kw):
106
+ sm_out = torch.nn.functional.softmax(data, dim=dim, **kw)
107
+ stretched_out = sm_out * (eta - gamma) + gamma
108
+ return torch.clip(stretched_out, 0, 1)
109
+ def clipped_softmax1(data, dim=1, eta=1.1, gamma=-0.1, **kw):
110
+ sm_out = softmax_1(data, dim=dim, **kw)
111
+ stretched_out = sm_out * (eta - gamma) + gamma
112
+ return torch.clip(stretched_out, 0, 1)
113
+
114
+ class ViTEmbeddings(nn.Module):
115
+ """
116
+ Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
117
+ """
118
+
119
+ def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None:
120
+ super().__init__()
121
+
122
+ self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
123
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
124
+ self.patch_embeddings = ViTPatchEmbeddings(config)
125
+ num_patches = self.patch_embeddings.num_patches
126
+ self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
127
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
128
+ self.config = config
129
+
130
+ def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
131
+ """
132
+ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
133
+ resolution images.
134
+
135
+ Source:
136
+ https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
137
+ """
138
+
139
+ num_patches = embeddings.shape[1] - 1
140
+ num_positions = self.position_embeddings.shape[1] - 1
141
+ if num_patches == num_positions and height == width:
142
+ return self.position_embeddings
143
+ class_pos_embed = self.position_embeddings[:, 0]
144
+ patch_pos_embed = self.position_embeddings[:, 1:]
145
+ dim = embeddings.shape[-1]
146
+ h0 = height // self.config.patch_size
147
+ w0 = width // self.config.patch_size
148
+ # we add a small number to avoid floating point error in the interpolation
149
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
150
+ h0, w0 = h0 + 0.1, w0 + 0.1
151
+ patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
152
+ patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
153
+ patch_pos_embed = nn.functional.interpolate(
154
+ patch_pos_embed,
155
+ scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
156
+ mode="bicubic",
157
+ align_corners=False,
158
+ )
159
+ assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
160
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
161
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
162
+
163
+ def forward(
164
+ self,
165
+ pixel_values: torch.Tensor,
166
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
167
+ interpolate_pos_encoding: bool = False,
168
+ ) -> torch.Tensor:
169
+ batch_size, num_channels, height, width = pixel_values.shape
170
+ embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
171
+
172
+ if bool_masked_pos is not None:
173
+ seq_length = embeddings.shape[1]
174
+ mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
175
+ # replace the masked visual tokens by mask_tokens
176
+ mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
177
+ embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
178
+
179
+ # add the [CLS] token to the embedded patch tokens
180
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
181
+ embeddings = torch.cat((cls_tokens, embeddings), dim=1)
182
+
183
+ # add positional encoding to each token
184
+ if interpolate_pos_encoding:
185
+ embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
186
+ else:
187
+ embeddings = embeddings + self.position_embeddings
188
+
189
+ embeddings = self.dropout(embeddings)
190
+
191
+ return embeddings
192
+
193
+
194
+ class ViTPatchEmbeddings(nn.Module):
195
+ """
196
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
197
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
198
+ Transformer.
199
+ """
200
+
201
+ def __init__(self, config):
202
+ super().__init__()
203
+ image_size, patch_size = config.image_size, config.patch_size
204
+ num_channels, hidden_size = config.num_channels, config.hidden_size
205
+
206
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
207
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
208
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
209
+ self.image_size = image_size
210
+ self.patch_size = patch_size
211
+ self.num_channels = num_channels
212
+ self.num_patches = num_patches
213
+
214
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
215
+
216
+ def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
217
+ batch_size, num_channels, height, width = pixel_values.shape
218
+ if num_channels != self.num_channels:
219
+ raise ValueError(
220
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
221
+ f" Expected {self.num_channels} but got {num_channels}."
222
+ )
223
+ if not interpolate_pos_encoding:
224
+ if height != self.image_size[0] or width != self.image_size[1]:
225
+ raise ValueError(
226
+ f"Input image size ({height}*{width}) doesn't match model"
227
+ f" ({self.image_size[0]}*{self.image_size[1]})."
228
+ )
229
+ embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
230
+ return embeddings
231
+
232
+
233
+ class ViTSelfAttention(nn.Module):
234
+ def __init__(self, config: ViTConfig,
235
+ gamma=None,
236
+ ssm_eps=None,
237
+ tau=None,
238
+ skip_attn=False,
239
+ attn_gate_type=AttentionGateType.conditional_per_token,
240
+ attn_gate_init=0.25,
241
+ attn_gate_mlp=False,
242
+ attn_gate_mlp2=False,
243
+ max_seq_length=None,
244
+ fine_tuning=False,
245
+ attn_gate_linear_all_features=False) -> None:
246
+ super().__init__()
247
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
248
+ raise ValueError(
249
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
250
+ f"heads {config.num_attention_heads}."
251
+ )
252
+
253
+ self.num_attention_heads = config.num_attention_heads
254
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
255
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
256
+ self.softmax_fn = softmax_1
257
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
258
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
259
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
260
+
261
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
262
+ self.gamma = gamma
263
+ self.ssm_eps = ssm_eps
264
+ self.tau = tau
265
+ self.max_seq_length = max_seq_length
266
+
267
+ # define softmax function
268
+
269
+ self.skip_attn = skip_attn
270
+
271
+ # attention gating
272
+ self.last_gate_avg_prob = None
273
+ self.last_gate_all_probs = None
274
+
275
+ self.attn_gate_type = attn_gate_type
276
+ self.attn_gate_init = attn_gate_init
277
+ self.attn_gate_mlp = attn_gate_mlp
278
+ self.attn_gate_mlp2 = attn_gate_mlp2
279
+ self.attn_gate_linear_all_features = attn_gate_linear_all_features
280
+
281
+ self.alpha = None
282
+ self.gate_fn = torch.sigmoid
283
+ self.pooling_fn = partial(torch.mean, dim=1, keepdims=True)
284
+
285
+ self.fine_tuning = fine_tuning
286
+
287
+ # gate scaling factor
288
+ self.gate_scaling_factor = 1.0
289
+ if self.fine_tuning and self.attn_gate_init is not None:
290
+ self.gate_scaling_factor = 1.0 / self.attn_gate_init
291
+
292
+ # define gate
293
+ if self.attn_gate_type == AttentionGateType.unconditional_per_head:
294
+ init_alpha = torch.zeros(size=(self.num_attention_heads,))
295
+ self.alpha = nn.Parameter(init_alpha, requires_grad=True)
296
+
297
+ elif self.attn_gate_type in (
298
+ AttentionGateType.conditional_per_head,
299
+ AttentionGateType.conditional_per_token,
300
+ ):
301
+ if self.attn_gate_linear_all_features:
302
+ self.alpha = nn.Linear(self.all_head_size, self.num_attention_heads, bias=True)
303
+
304
+ else: # separate predictors for each head
305
+ module_list = []
306
+ for _ in range(self.num_attention_heads):
307
+ if self.attn_gate_mlp:
308
+ fc = nn.Sequential(
309
+ nn.Linear(
310
+ self.attention_head_size, self.attention_head_size // 4, bias=True
311
+ ),
312
+ nn.ReLU(),
313
+ nn.Linear(self.attention_head_size // 4, 1, bias=True),
314
+ )
315
+ elif self.attn_gate_mlp2:
316
+ fc = nn.Sequential(
317
+ nn.Linear(
318
+ self.attention_head_size, self.attention_head_size, bias=True
319
+ ),
320
+ nn.ReLU(),
321
+ nn.Linear(self.attention_head_size, 1, bias=True),
322
+ )
323
+ else:
324
+ fc = nn.Linear(self.attention_head_size, 1, bias=True)
325
+
326
+ if self.attn_gate_init is not None:
327
+ init_bias = logit(self.attn_gate_init)
328
+ torch.nn.init.constant_(fc.bias, init_bias)
329
+
330
+ if self.fine_tuning:
331
+ # init to a very small values
332
+ torch.nn.init.normal_(fc.weight, mean=0.0, std=0.01)
333
+
334
+ module_list.append(fc)
335
+ self.alpha = nn.ModuleList(module_list)
336
+
337
+
338
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
339
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
340
+ x = x.view(new_x_shape)
341
+ return x.permute(0, 2, 1, 3)
342
+
343
+ def forward(
344
+ self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
345
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
346
+ mixed_query_layer = self.query(hidden_states)
347
+
348
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
349
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
350
+ query_layer = self.transpose_for_scores(mixed_query_layer)
351
+
352
+ # Take the dot product between "query" and "key" to get the raw attention scores.
353
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
354
+
355
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
356
+
357
+ # Normalize the attention scores to probabilities.
358
+ attention_probs = self.softmax_fn(attention_scores, dim=-1)
359
+
360
+ # This is actually dropping out entire tokens to attend to, which might
361
+ # seem a bit unusual, but is taken from the original Transformer paper.
362
+ attention_probs = self.dropout(attention_probs)
363
+
364
+ # Mask heads if we want to
365
+ if head_mask is not None:
366
+ attention_probs = attention_probs * head_mask
367
+
368
+ context_layer = torch.matmul(attention_probs, value_layer)
369
+
370
+
371
+ # *** Gating ***
372
+ if self.attn_gate_type == AttentionGateType.unconditional_per_head:
373
+ gate = self.gate_fn(self.alpha) # (H,)
374
+ context_layer *= gate.view(-1, 1, 1) # (B, H, T, d_head)
375
+
376
+ self.last_gate_avg_prob = gate.view(-1)
377
+
378
+ elif self.attn_gate_type in (
379
+ AttentionGateType.conditional_per_head,
380
+ AttentionGateType.conditional_per_token,
381
+ ):
382
+
383
+ x = hidden_states
384
+
385
+ if self.attn_gate_linear_all_features: # assume per_token
386
+ alpha = self.alpha(x) # (B, T, H)
387
+ gate = self.gate_fn(alpha)
388
+ gate = gate.permute(0, 2, 1).contiguous() # (B, H, T)
389
+ gate = gate.unsqueeze(3) # (B, H, T, 1)
390
+
391
+ else:
392
+ x = self.transpose_for_scores(x) # (B, H, T, d_head)
393
+
394
+ alpha = []
395
+ for head_idx in range(self.num_attention_heads):
396
+ x_head = x[:, head_idx, ...] # (B, T, d_head)
397
+ fc_head = self.alpha[head_idx]
398
+ alpha_head = fc_head(x_head) # (B, T, 1)
399
+ if self.attn_gate_type == AttentionGateType.conditional_per_head:
400
+ alpha_head = self.pooling_fn(alpha_head) # (B, 1, 1)
401
+ alpha.append(alpha_head)
402
+ alpha = torch.stack(alpha, dim=1) # (B, H, *, 1)
403
+ gate = self.gate_fn(alpha)
404
+
405
+ context_layer *= gate * self.gate_scaling_factor
406
+
407
+ self.last_gate_all_probs = gate # all gates to see the distributions
408
+ avg_gate = gate.mean(dim=0)
409
+ self.last_gate_avg_prob = avg_gate.view(self.num_attention_heads, -1).mean(dim=1)
410
+
411
+
412
+
413
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
414
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
415
+ context_layer = context_layer.view(new_context_layer_shape)
416
+
417
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
418
+
419
+ return outputs
420
+
421
+ def scaled_dot_product_attention(query, key, value, softmax_fn, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
422
+ # Efficient implementation equivalent to the following:
423
+ device = "cuda" if torch.cuda.is_available() else "cpu"
424
+ L, S = query.size(-2), key.size(-2)
425
+ scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
426
+ attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
427
+ if is_causal:
428
+ assert attn_mask is None
429
+ temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
430
+ attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
431
+ attn_bias.to(query.dtype)
432
+
433
+ if attn_mask is not None:
434
+ if attn_mask.dtype == torch.bool:
435
+ attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
436
+ else:
437
+ attn_bias += attn_mask
438
+ attn_weight = query @ key.transpose(-2, -1) * scale_factor
439
+ attn_weight += attn_bias
440
+ attn_weight = softmax_fn(attn_weight, dim=-1)
441
+ attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
442
+ return attn_weight @ value
443
+
444
+ class ViTSdpaSelfAttention(ViTSelfAttention):
445
+ def __init__(self, config: ViTConfig) -> None:
446
+ super().__init__(config)
447
+ self.attention_probs_dropout_prob = config.attention_probs_dropout_prob
448
+
449
+ def forward(
450
+ self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
451
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
452
+ mixed_query_layer = self.query(hidden_states)
453
+
454
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
455
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
456
+ query_layer = self.transpose_for_scores(mixed_query_layer)
457
+
458
+ context_layer = scaled_dot_product_attention(
459
+ query_layer,
460
+ key_layer,
461
+ value_layer,
462
+ dropout_p=self.attention_probs_dropout_prob if self.training else 0.0,
463
+ attn_mask=head_mask,
464
+ softmax_fn = self.softmax_fn,
465
+ is_causal=False,
466
+ scale=None,
467
+ )
468
+
469
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
470
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
471
+ context_layer = context_layer.view(new_context_layer_shape)
472
+
473
+ return context_layer, None
474
+
475
+
476
+ class ViTSelfOutput(nn.Module):
477
+ """
478
+ The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the
479
+ layernorm applied before each block.
480
+ """
481
+
482
+ def __init__(self, config: ViTConfig) -> None:
483
+ super().__init__()
484
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
485
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
486
+
487
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
488
+ hidden_states = self.dense(hidden_states)
489
+ hidden_states = self.dropout(hidden_states)
490
+
491
+ return hidden_states
492
+
493
+
494
+ class ViTAttention(nn.Module):
495
+ def __init__(self, config: ViTConfig) -> None:
496
+ super().__init__()
497
+ self.attention = ViTSelfAttention(config)
498
+ self.output = ViTSelfOutput(config)
499
+ self.pruned_heads = set()
500
+
501
+ def prune_heads(self, heads: Set[int]) -> None:
502
+ if len(heads) == 0:
503
+ return
504
+ heads, index = find_pruneable_heads_and_indices(
505
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
506
+ )
507
+
508
+ # Prune linear layers
509
+ self.attention.query = prune_linear_layer(self.attention.query, index)
510
+ self.attention.key = prune_linear_layer(self.attention.key, index)
511
+ self.attention.value = prune_linear_layer(self.attention.value, index)
512
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
513
+
514
+ # Update hyper params and store pruned heads
515
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
516
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
517
+ self.pruned_heads = self.pruned_heads.union(heads)
518
+
519
+ def forward(
520
+ self,
521
+ hidden_states: torch.Tensor,
522
+ head_mask: Optional[torch.Tensor] = None,
523
+ output_attentions: bool = False,
524
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
525
+ self_outputs = self.attention(hidden_states, head_mask, output_attentions)
526
+
527
+ attention_output = self.output(self_outputs[0], hidden_states)
528
+
529
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
530
+ return outputs
531
+
532
+
533
+ class ViTSdpaAttention(ViTAttention):
534
+ def __init__(self, config: ViTConfig) -> None:
535
+ super().__init__(config)
536
+ self.attention = ViTSdpaSelfAttention(config)
537
+
538
+
539
+ class ViTIntermediate(nn.Module):
540
+ def __init__(self, config: ViTConfig) -> None:
541
+ super().__init__()
542
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
543
+ if isinstance(config.hidden_act, str):
544
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
545
+ else:
546
+ self.intermediate_act_fn = config.hidden_act
547
+
548
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
549
+ hidden_states = self.dense(hidden_states)
550
+ hidden_states = self.intermediate_act_fn(hidden_states)
551
+
552
+ return hidden_states
553
+
554
+
555
+ class ViTOutput(nn.Module):
556
+ def __init__(self, config: ViTConfig) -> None:
557
+ super().__init__()
558
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
559
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
560
+
561
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
562
+ hidden_states = self.dense(hidden_states)
563
+ hidden_states = self.dropout(hidden_states)
564
+
565
+ hidden_states = hidden_states + input_tensor
566
+
567
+ return hidden_states
568
+
569
+
570
+ VIT_ATTENTION_CLASSES = {
571
+ "eager": ViTAttention,
572
+ "sdpa": ViTSdpaAttention,
573
+ }
574
+
575
+
576
+ class ViTLayer(nn.Module):
577
+ """This corresponds to the Block class in the timm implementation."""
578
+
579
+ def __init__(self, config: ViTConfig) -> None:
580
+ super().__init__()
581
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
582
+ self.seq_len_dim = 1
583
+ self.attention = VIT_ATTENTION_CLASSES[config._attn_implementation](config)
584
+ self.intermediate = ViTIntermediate(config)
585
+ self.output = ViTOutput(config)
586
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
587
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
588
+
589
+ def forward(
590
+ self,
591
+ hidden_states: torch.Tensor,
592
+ head_mask: Optional[torch.Tensor] = None,
593
+ output_attentions: bool = False,
594
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
595
+ self_attention_outputs = self.attention(
596
+ self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
597
+ head_mask,
598
+ output_attentions=output_attentions,
599
+ )
600
+ attention_output = self_attention_outputs[0]
601
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
602
+
603
+ # first residual connection
604
+ hidden_states = attention_output + hidden_states
605
+
606
+ # in ViT, layernorm is also applied after self-attention
607
+ layer_output = self.layernorm_after(hidden_states)
608
+ layer_output = self.intermediate(layer_output)
609
+
610
+ # second residual connection is done here
611
+ layer_output = self.output(layer_output, hidden_states)
612
+
613
+ outputs = (layer_output,) + outputs
614
+
615
+ return outputs
616
+
617
+
618
+ class ViTEncoder(nn.Module):
619
+ def __init__(self, config: ViTConfig) -> None:
620
+ super().__init__()
621
+ self.config = config
622
+ self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)])
623
+ self.gradient_checkpointing = False
624
+
625
+ def forward(
626
+ self,
627
+ hidden_states: torch.Tensor,
628
+ head_mask: Optional[torch.Tensor] = None,
629
+ output_attentions: bool = False,
630
+ output_hidden_states: bool = False,
631
+ return_dict: bool = True,
632
+ ) -> Union[tuple, BaseModelOutput]:
633
+ all_hidden_states = () if output_hidden_states else None
634
+ all_self_attentions = () if output_attentions else None
635
+
636
+ for i, layer_module in enumerate(self.layer):
637
+ if output_hidden_states:
638
+ all_hidden_states = all_hidden_states + (hidden_states,)
639
+
640
+ layer_head_mask = head_mask[i] if head_mask is not None else None
641
+
642
+ if self.gradient_checkpointing and self.training:
643
+ layer_outputs = self._gradient_checkpointing_func(
644
+ layer_module.__call__,
645
+ hidden_states,
646
+ layer_head_mask,
647
+ output_attentions,
648
+ )
649
+ else:
650
+ layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
651
+
652
+ hidden_states = layer_outputs[0]
653
+
654
+ if output_attentions:
655
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
656
+
657
+ if output_hidden_states:
658
+ all_hidden_states = all_hidden_states + (hidden_states,)
659
+
660
+ if not return_dict:
661
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
662
+ return BaseModelOutput(
663
+ last_hidden_state=hidden_states,
664
+ hidden_states=all_hidden_states,
665
+ attentions=all_self_attentions,
666
+ )
667
+
668
+
669
+ class ViTPreTrainedModel(PreTrainedModel):
670
+ """
671
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
672
+ models.
673
+ """
674
+
675
+ config_class = ViTConfig
676
+ base_model_prefix = "vit"
677
+ main_input_name = "pixel_values"
678
+ supports_gradient_checkpointing = True
679
+ _no_split_modules = ["ViTEmbeddings", "ViTLayer"]
680
+ _supports_sdpa = True
681
+
682
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
683
+ """Initialize the weights"""
684
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
685
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
686
+ # `trunc_normal_cpu` not implemented in `half` issues
687
+ module.weight.data = nn.init.trunc_normal_(
688
+ module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
689
+ ).to(module.weight.dtype)
690
+ if module.bias is not None:
691
+ module.bias.data.zero_()
692
+ elif isinstance(module, nn.LayerNorm):
693
+ module.bias.data.zero_()
694
+ module.weight.data.fill_(1.0)
695
+ elif isinstance(module, ViTEmbeddings):
696
+ module.position_embeddings.data = nn.init.trunc_normal_(
697
+ module.position_embeddings.data.to(torch.float32),
698
+ mean=0.0,
699
+ std=self.config.initializer_range,
700
+ ).to(module.position_embeddings.dtype)
701
+
702
+ module.cls_token.data = nn.init.trunc_normal_(
703
+ module.cls_token.data.to(torch.float32),
704
+ mean=0.0,
705
+ std=self.config.initializer_range,
706
+ ).to(module.cls_token.dtype)
707
+
708
+
709
+ VIT_START_DOCSTRING = r"""
710
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
711
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
712
+ behavior.
713
+
714
+ Parameters:
715
+ config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
716
+ Initializing with a config file does not load the weights associated with the model, only the
717
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
718
+ """
719
+
720
+ VIT_INPUTS_DOCSTRING = r"""
721
+ Args:
722
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
723
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
724
+ for details.
725
+
726
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
727
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
728
+
729
+ - 1 indicates the head is **not masked**,
730
+ - 0 indicates the head is **masked**.
731
+
732
+ output_attentions (`bool`, *optional*):
733
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
734
+ tensors for more detail.
735
+ output_hidden_states (`bool`, *optional*):
736
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
737
+ more detail.
738
+ interpolate_pos_encoding (`bool`, *optional*):
739
+ Whether to interpolate the pre-trained position encodings.
740
+ return_dict (`bool`, *optional*):
741
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
742
+ """
743
+
744
+
745
+ @add_start_docstrings(
746
+ "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
747
+ VIT_START_DOCSTRING,
748
+ )
749
+ class ViTModel(ViTPreTrainedModel):
750
+ def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False):
751
+ super().__init__(config)
752
+ self.config = config
753
+
754
+ self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token)
755
+ self.encoder = ViTEncoder(config)
756
+
757
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
758
+ self.pooler = ViTPooler(config) if add_pooling_layer else None
759
+
760
+ # Initialize weights and apply final processing
761
+ self.post_init()
762
+
763
+ def get_input_embeddings(self) -> ViTPatchEmbeddings:
764
+ return self.embeddings.patch_embeddings
765
+
766
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
767
+ """
768
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
769
+ class PreTrainedModel
770
+ """
771
+ for layer, heads in heads_to_prune.items():
772
+ self.encoder.layer[layer].attention.prune_heads(heads)
773
+
774
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
775
+ @add_code_sample_docstrings(
776
+ checkpoint=_CHECKPOINT_FOR_DOC,
777
+ output_type=BaseModelOutputWithPooling,
778
+ config_class=_CONFIG_FOR_DOC,
779
+ modality="vision",
780
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
781
+ )
782
+ def forward(
783
+ self,
784
+ pixel_values: Optional[torch.Tensor] = None,
785
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
786
+ head_mask: Optional[torch.Tensor] = None,
787
+ output_attentions: Optional[bool] = None,
788
+ output_hidden_states: Optional[bool] = None,
789
+ interpolate_pos_encoding: Optional[bool] = None,
790
+ return_dict: Optional[bool] = None,
791
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
792
+ r"""
793
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
794
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
795
+ """
796
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
797
+ output_hidden_states = (
798
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
799
+ )
800
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
801
+
802
+ if pixel_values is None:
803
+ raise ValueError("You have to specify pixel_values")
804
+
805
+ # Prepare head mask if needed
806
+ # 1.0 in head_mask indicate we keep the head
807
+ # attention_probs has shape bsz x n_heads x N x N
808
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
809
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
810
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
811
+
812
+ # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
813
+ expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
814
+ if pixel_values.dtype != expected_dtype:
815
+ pixel_values = pixel_values.to(expected_dtype)
816
+
817
+ embedding_output = self.embeddings(
818
+ pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
819
+ )
820
+
821
+ encoder_outputs = self.encoder(
822
+ embedding_output,
823
+ head_mask=head_mask,
824
+ output_attentions=output_attentions,
825
+ output_hidden_states=output_hidden_states,
826
+ return_dict=return_dict,
827
+ )
828
+ sequence_output = encoder_outputs[0]
829
+ sequence_output = self.layernorm(sequence_output)
830
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
831
+
832
+ if not return_dict:
833
+ head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
834
+ return head_outputs + encoder_outputs[1:]
835
+
836
+ return BaseModelOutputWithPooling(
837
+ last_hidden_state=sequence_output,
838
+ pooler_output=pooled_output,
839
+ hidden_states=encoder_outputs.hidden_states,
840
+ attentions=encoder_outputs.attentions,
841
+ )
842
+
843
+
844
+ class ViTPooler(nn.Module):
845
+ def __init__(self, config: ViTConfig):
846
+ super().__init__()
847
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
848
+ self.activation = nn.Tanh()
849
+
850
+ def forward(self, hidden_states):
851
+ # We "pool" the model by simply taking the hidden state corresponding
852
+ # to the first token.
853
+ first_token_tensor = hidden_states[:, 0]
854
+ pooled_output = self.dense(first_token_tensor)
855
+ pooled_output = self.activation(pooled_output)
856
+ return pooled_output
857
+
858
+
859
+ @add_start_docstrings(
860
+ """ViT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886).
861
+
862
+ <Tip>
863
+
864
+ Note that we provide a script to pre-train this model on custom data in our [examples
865
+ directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
866
+
867
+ </Tip>
868
+ """,
869
+ VIT_START_DOCSTRING,
870
+ )
871
+ class ViTForMaskedImageModeling(ViTPreTrainedModel):
872
+ def __init__(self, config: ViTConfig) -> None:
873
+ super().__init__(config)
874
+
875
+ self.vit = ViTModel(config, add_pooling_layer=False, use_mask_token=True)
876
+
877
+ self.decoder = nn.Sequential(
878
+ nn.Conv2d(
879
+ in_channels=config.hidden_size,
880
+ out_channels=config.encoder_stride**2 * config.num_channels,
881
+ kernel_size=1,
882
+ ),
883
+ nn.PixelShuffle(config.encoder_stride),
884
+ )
885
+
886
+ # Initialize weights and apply final processing
887
+ self.post_init()
888
+
889
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
890
+ @replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
891
+ def forward(
892
+ self,
893
+ pixel_values: Optional[torch.Tensor] = None,
894
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
895
+ head_mask: Optional[torch.Tensor] = None,
896
+ output_attentions: Optional[bool] = None,
897
+ output_hidden_states: Optional[bool] = None,
898
+ interpolate_pos_encoding: Optional[bool] = None,
899
+ return_dict: Optional[bool] = None,
900
+ ) -> Union[tuple, MaskedImageModelingOutput]:
901
+ r"""
902
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
903
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
904
+
905
+ Returns:
906
+
907
+ Examples:
908
+ ```python
909
+ >>> from transformers import AutoImageProcessor, ViTForMaskedImageModeling
910
+ >>> import torch
911
+ >>> from PIL import Image
912
+ >>> import requests
913
+
914
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
915
+ >>> image = Image.open(requests.get(url, stream=True).raw)
916
+
917
+ >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
918
+ >>> model = ViTForMaskedImageModeling.from_pretrained("google/vit-base-patch16-224-in21k")
919
+
920
+ >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
921
+ >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
922
+ >>> # create random boolean mask of shape (batch_size, num_patches)
923
+ >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
924
+
925
+ >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
926
+ >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
927
+ >>> list(reconstructed_pixel_values.shape)
928
+ [1, 3, 224, 224]
929
+ ```"""
930
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
931
+
932
+ if bool_masked_pos is not None and (self.config.patch_size != self.config.encoder_stride):
933
+ raise ValueError(
934
+ "When `bool_masked_pos` is provided, `patch_size` must be equal to `encoder_stride` to ensure that "
935
+ "the reconstructed image has the same dimensions as the input. "
936
+ f"Got `patch_size` = {self.config.patch_size} and `encoder_stride` = {self.config.encoder_stride}."
937
+ )
938
+
939
+ outputs = self.vit(
940
+ pixel_values,
941
+ bool_masked_pos=bool_masked_pos,
942
+ head_mask=head_mask,
943
+ output_attentions=output_attentions,
944
+ output_hidden_states=output_hidden_states,
945
+ interpolate_pos_encoding=interpolate_pos_encoding,
946
+ return_dict=return_dict,
947
+ )
948
+
949
+ sequence_output = outputs[0]
950
+
951
+ # Reshape to (batch_size, num_channels, height, width)
952
+ sequence_output = sequence_output[:, 1:]
953
+ batch_size, sequence_length, num_channels = sequence_output.shape
954
+ height = width = math.floor(sequence_length**0.5)
955
+ sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
956
+
957
+ # Reconstruct pixel values
958
+ reconstructed_pixel_values = self.decoder(sequence_output)
959
+
960
+ masked_im_loss = None
961
+ if bool_masked_pos is not None:
962
+ size = self.config.image_size // self.config.patch_size
963
+ bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
964
+ mask = (
965
+ bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
966
+ .repeat_interleave(self.config.patch_size, 2)
967
+ .unsqueeze(1)
968
+ .contiguous()
969
+ )
970
+ reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
971
+ masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
972
+
973
+ if not return_dict:
974
+ output = (reconstructed_pixel_values,) + outputs[1:]
975
+ return ((masked_im_loss,) + output) if masked_im_loss is not None else output
976
+
977
+ return MaskedImageModelingOutput(
978
+ loss=masked_im_loss,
979
+ reconstruction=reconstructed_pixel_values,
980
+ hidden_states=outputs.hidden_states,
981
+ attentions=outputs.attentions,
982
+ )
983
+
984
+
985
+ @add_start_docstrings(
986
+ """
987
+ ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
988
+ the [CLS] token) e.g. for ImageNet.
989
+
990
+ <Tip>
991
+
992
+ Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
993
+ setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
994
+ position embeddings to the higher resolution.
995
+
996
+ </Tip>
997
+ """,
998
+ VIT_START_DOCSTRING,
999
+ )
1000
+ class ViTForImageClassification(ViTPreTrainedModel):
1001
+ def __init__(self, config: ViTConfig) -> None:
1002
+ super().__init__(config)
1003
+
1004
+ self.num_labels = config.num_labels
1005
+ self.vit = ViTModel(config, add_pooling_layer=False)
1006
+
1007
+ # Classifier head
1008
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
1009
+
1010
+ # Initialize weights and apply final processing
1011
+ self.post_init()
1012
+
1013
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
1014
+ @add_code_sample_docstrings(
1015
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
1016
+ output_type=ImageClassifierOutput,
1017
+ config_class=_CONFIG_FOR_DOC,
1018
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
1019
+ )
1020
+ def forward(
1021
+ self,
1022
+ pixel_values: Optional[torch.Tensor] = None,
1023
+ head_mask: Optional[torch.Tensor] = None,
1024
+ labels: Optional[torch.Tensor] = None,
1025
+ output_attentions: Optional[bool] = None,
1026
+ output_hidden_states: Optional[bool] = None,
1027
+ interpolate_pos_encoding: Optional[bool] = None,
1028
+ return_dict: Optional[bool] = None,
1029
+ ) -> Union[tuple, ImageClassifierOutput]:
1030
+ r"""
1031
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1032
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
1033
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1034
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1035
+ """
1036
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1037
+
1038
+ outputs = self.vit(
1039
+ pixel_values,
1040
+ head_mask=head_mask,
1041
+ output_attentions=output_attentions,
1042
+ output_hidden_states=output_hidden_states,
1043
+ interpolate_pos_encoding=interpolate_pos_encoding,
1044
+ return_dict=return_dict,
1045
+ )
1046
+
1047
+ sequence_output = outputs[0]
1048
+
1049
+ logits = self.classifier(sequence_output[:, 0, :])
1050
+
1051
+ loss = None
1052
+ if labels is not None:
1053
+ # move labels to correct device to enable model parallelism
1054
+ labels = labels.to(logits.device)
1055
+ if self.config.problem_type is None:
1056
+ if self.num_labels == 1:
1057
+ self.config.problem_type = "regression"
1058
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1059
+ self.config.problem_type = "single_label_classification"
1060
+ else:
1061
+ self.config.problem_type = "multi_label_classification"
1062
+
1063
+ if self.config.problem_type == "regression":
1064
+ loss_fct = MSELoss()
1065
+ if self.num_labels == 1:
1066
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1067
+ else:
1068
+ loss = loss_fct(logits, labels)
1069
+ elif self.config.problem_type == "single_label_classification":
1070
+ loss_fct = CrossEntropyLoss()
1071
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1072
+ elif self.config.problem_type == "multi_label_classification":
1073
+ loss_fct = BCEWithLogitsLoss()
1074
+ loss = loss_fct(logits, labels)
1075
+
1076
+ if not return_dict:
1077
+ output = (logits,) + outputs[1:]
1078
+ return ((loss,) + output) if loss is not None else output
1079
+
1080
+ return ImageClassifierOutput(
1081
+ loss=loss,
1082
+ logits=logits,
1083
+ hidden_states=outputs.hidden_states,
1084
+ attentions=outputs.attentions,
1085
+ )