robinzixuan
commited on
Commit
•
94c71c2
1
Parent(s):
41fa746
Upload 2 files
Browse files- configuration_opt.py +143 -0
- modeling_opt.py +1728 -0
configuration_opt.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""OPT model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class OPTConfig(PretrainedConfig):
|
25 |
+
r"""
|
26 |
+
This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model
|
27 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
28 |
+
defaults will yield a similar configuration to that of the OPT
|
29 |
+
[facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture.
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_size (`int`, *optional*, defaults to 50272):
|
37 |
+
Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the
|
38 |
+
`inputs_ids` passed when calling [`OPTModel`]
|
39 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
40 |
+
Dimensionality of the layers and the pooler layer.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
42 |
+
Number of decoder layers.
|
43 |
+
ffn_dim (`int`, *optional*, defaults to 3072):
|
44 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
46 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
47 |
+
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
48 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
49 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
50 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
51 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
52 |
+
just in case (e.g., 512 or 1024 or 2048).
|
53 |
+
do_layer_norm_before (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether to perform layer normalization before the attention block.
|
55 |
+
word_embed_proj_dim (`int`, *optional*):
|
56 |
+
`word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to
|
57 |
+
`hidden_size`.
|
58 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
60 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
61 |
+
The dropout ratio for the attention probabilities.
|
62 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
63 |
+
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
|
64 |
+
details.
|
65 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
69 |
+
enable_bias (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether or not if the linear layers in the attention blocks should use the bias term.
|
71 |
+
layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not if the layer norms should have learnable parameters.
|
73 |
+
|
74 |
+
Example:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> from transformers import OPTConfig, OPTModel
|
78 |
+
|
79 |
+
>>> # Initializing a OPT facebook/opt-large style configuration
|
80 |
+
>>> configuration = OPTConfig()
|
81 |
+
|
82 |
+
>>> # Initializing a model (with random weights) from the facebook/opt-large style configuration
|
83 |
+
>>> model = OPTModel(configuration)
|
84 |
+
|
85 |
+
>>> # Accessing the model configuration
|
86 |
+
>>> configuration = model.config
|
87 |
+
```"""
|
88 |
+
|
89 |
+
model_type = "opt"
|
90 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
vocab_size=50272,
|
95 |
+
hidden_size=768,
|
96 |
+
num_hidden_layers=12,
|
97 |
+
ffn_dim=3072,
|
98 |
+
max_position_embeddings=2048,
|
99 |
+
do_layer_norm_before=True,
|
100 |
+
_remove_final_layer_norm=False,
|
101 |
+
word_embed_proj_dim=None,
|
102 |
+
dropout=0.1,
|
103 |
+
attention_dropout=0.0,
|
104 |
+
num_attention_heads=12,
|
105 |
+
activation_function="relu",
|
106 |
+
layerdrop=0.0,
|
107 |
+
init_std=0.02,
|
108 |
+
use_cache=True,
|
109 |
+
pad_token_id=1,
|
110 |
+
bos_token_id=2,
|
111 |
+
eos_token_id=2,
|
112 |
+
enable_bias=True,
|
113 |
+
layer_norm_elementwise_affine=True,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
super().__init__(
|
117 |
+
pad_token_id=pad_token_id,
|
118 |
+
bos_token_id=bos_token_id,
|
119 |
+
eos_token_id=eos_token_id,
|
120 |
+
**kwargs,
|
121 |
+
)
|
122 |
+
self.vocab_size = vocab_size
|
123 |
+
self.max_position_embeddings = max_position_embeddings
|
124 |
+
self.num_attention_heads = num_attention_heads
|
125 |
+
self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size
|
126 |
+
self.ffn_dim = ffn_dim
|
127 |
+
self.hidden_size = hidden_size
|
128 |
+
self.num_hidden_layers = num_hidden_layers
|
129 |
+
self.dropout = dropout
|
130 |
+
self.attention_dropout = attention_dropout
|
131 |
+
self.activation_function = activation_function
|
132 |
+
self.init_std = init_std
|
133 |
+
self.layerdrop = layerdrop
|
134 |
+
self.use_cache = use_cache
|
135 |
+
self.do_layer_norm_before = do_layer_norm_before
|
136 |
+
# We keep these variables at `True` for backward compatibility.
|
137 |
+
self.enable_bias = enable_bias
|
138 |
+
self.layer_norm_elementwise_affine = layer_norm_elementwise_affine
|
139 |
+
|
140 |
+
# Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility
|
141 |
+
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
142 |
+
# see https://github.com/facebookresearch/metaseq/pull/164
|
143 |
+
self._remove_final_layer_norm = _remove_final_layer_norm
|
modeling_opt.py
ADDED
@@ -0,0 +1,1728 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch OPT model."""
|
16 |
+
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
from functools import partial
|
19 |
+
import torch
|
20 |
+
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
28 |
+
from transformers.modeling_outputs import (
|
29 |
+
BaseModelOutputWithPast,
|
30 |
+
CausalLMOutputWithPast,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutputWithPast,
|
33 |
+
)
|
34 |
+
from enum import Flag, auto
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import (
|
37 |
+
add_code_sample_docstrings,
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
|
41 |
+
is_flash_attn_2_available,
|
42 |
+
is_flash_attn_greater_or_equal_2_10,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
|
46 |
+
)
|
47 |
+
from .configuration_opt import OPTConfig
|
48 |
+
|
49 |
+
|
50 |
+
class BaseEnumOptions(Flag):
|
51 |
+
def __str__(self):
|
52 |
+
return self.name
|
53 |
+
|
54 |
+
@classmethod
|
55 |
+
def list_names(cls):
|
56 |
+
return [m.name for m in cls]
|
57 |
+
|
58 |
+
|
59 |
+
class AttentionGateType(BaseEnumOptions):
|
60 |
+
none = 0
|
61 |
+
unconditional_per_head = 1
|
62 |
+
conditional_per_head = 2
|
63 |
+
conditional_per_token = 3
|
64 |
+
|
65 |
+
|
66 |
+
if is_flash_attn_2_available():
|
67 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
68 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
69 |
+
|
70 |
+
|
71 |
+
logger = logging.get_logger(__name__)
|
72 |
+
|
73 |
+
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
|
74 |
+
_CONFIG_FOR_DOC = "OPTConfig"
|
75 |
+
|
76 |
+
# Base model docstring
|
77 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
|
78 |
+
|
79 |
+
# SequenceClassification docstring
|
80 |
+
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc"
|
81 |
+
_SEQ_CLASS_EXPECTED_LOSS = 1.71
|
82 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
|
83 |
+
|
84 |
+
|
85 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
86 |
+
def _get_unpad_data(attention_mask):
|
87 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
88 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
89 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
90 |
+
cu_seqlens = F.pad(torch.cumsum(
|
91 |
+
seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
92 |
+
return (
|
93 |
+
indices,
|
94 |
+
cu_seqlens,
|
95 |
+
max_seqlen_in_batch,
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
class OPTLearnedPositionalEmbedding(nn.Embedding):
|
100 |
+
"""
|
101 |
+
This module learns positional embeddings up to a fixed maximum size.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, num_embeddings: int, embedding_dim: int):
|
105 |
+
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
|
106 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
107 |
+
self.offset = 2
|
108 |
+
super().__init__(num_embeddings + self.offset, embedding_dim)
|
109 |
+
|
110 |
+
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
|
111 |
+
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
112 |
+
attention_mask = attention_mask.long()
|
113 |
+
|
114 |
+
# create positions depending on attention_mask
|
115 |
+
positions = (torch.cumsum(attention_mask, dim=1).type_as(
|
116 |
+
attention_mask) * attention_mask).long() - 1
|
117 |
+
|
118 |
+
# cut positions if `past_key_values_length` is > 0
|
119 |
+
positions = positions[:, past_key_values_length:]
|
120 |
+
|
121 |
+
return super().forward(positions + self.offset)
|
122 |
+
|
123 |
+
|
124 |
+
def softmax_n_shifted_zeros(input: torch.Tensor, n: int, dim=-1) -> torch.Tensor:
|
125 |
+
"""
|
126 |
+
$\text(softmax)_n(x_i) = exp(x_i) / (n + \sum_j exp(x_j))$
|
127 |
+
Note: softmax_n, with fixed input, is _not_ shift-symmetric when n != 0
|
128 |
+
"""
|
129 |
+
# compute the maxes along the last dimension
|
130 |
+
input_maxes = input.max(dim=dim, keepdim=True).values
|
131 |
+
# shift the input to prevent overflow (and underflow in the denominator)
|
132 |
+
shifted_inputs = torch.subtract(input, input_maxes)
|
133 |
+
# compute the numerator and softmax_0 denominator using the shifted input
|
134 |
+
numerator = torch.exp(shifted_inputs)
|
135 |
+
original_denominator = numerator.sum(dim=dim, keepdim=True)
|
136 |
+
# we need to shift the zeros in the same way we shifted the inputs
|
137 |
+
shifted_zeros = torch.multiply(input_maxes, -1)
|
138 |
+
# and then add this contribution to the denominator
|
139 |
+
denominator = torch.add(original_denominator,
|
140 |
+
torch.multiply(torch.exp(shifted_zeros), n))
|
141 |
+
return torch.divide(numerator, denominator)
|
142 |
+
|
143 |
+
|
144 |
+
def softmax_1(input: torch.Tensor, dim=-1, dtype=torch.float32) -> torch.Tensor:
|
145 |
+
"""
|
146 |
+
$\text(softmax)_n(x_i) = exp(x_i) / (1 + \sum_j exp(x_j))$
|
147 |
+
"""
|
148 |
+
output = softmax_n_shifted_zeros(input, 1, dim=dim)
|
149 |
+
return output if dtype is None else output.type(dtype=dtype)
|
150 |
+
|
151 |
+
|
152 |
+
def clipped_softmax(data, dim=1, eta=1.1, gamma=-0.1, **kw):
|
153 |
+
sm_out = torch.nn.functional.softmax(data, dim=dim, **kw)
|
154 |
+
stretched_out = sm_out * (eta - gamma) + gamma
|
155 |
+
return torch.clip(stretched_out, 0, 1)
|
156 |
+
|
157 |
+
|
158 |
+
def clipped_softmax1(data, dim=1, eta=1.1, gamma=-0.1, **kw):
|
159 |
+
sm_out = softmax_1(data, dim=dim, **kw)
|
160 |
+
stretched_out = sm_out * (eta - gamma) + gamma
|
161 |
+
return torch.clip(stretched_out, 0, 1)
|
162 |
+
|
163 |
+
|
164 |
+
class OPTAttention(nn.Module):
|
165 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
166 |
+
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
config: OPTConfig,
|
170 |
+
dropout: float = 0.0,
|
171 |
+
is_decoder: bool = False,
|
172 |
+
bias: bool = True,
|
173 |
+
# new
|
174 |
+
softmax_fn=softmax_1,
|
175 |
+
alpha=None,
|
176 |
+
max_seq_length=512,
|
177 |
+
ssm_eps=None,
|
178 |
+
tau=None,
|
179 |
+
skip_attn=False,
|
180 |
+
attn_gate_type=AttentionGateType.conditional_per_token,
|
181 |
+
attn_gate_init=0.25,
|
182 |
+
attn_gate_mlp=False,
|
183 |
+
attn_gate_mlp2=False,
|
184 |
+
attn_gate_linear_all_features=False,
|
185 |
+
fine_tuning=False,
|
186 |
+
attn_softmax='softmax1',
|
187 |
+
):
|
188 |
+
super().__init__()
|
189 |
+
self.embed_dim = config.hidden_size
|
190 |
+
self.num_heads = config.num_attention_heads
|
191 |
+
self.dropout = config.attention_dropout
|
192 |
+
self.enable_bias = config.enable_bias
|
193 |
+
self.head_dim = self.embed_dim // self.num_heads
|
194 |
+
self.is_causal = True
|
195 |
+
|
196 |
+
if (self.head_dim * self.num_heads) != self.embed_dim:
|
197 |
+
raise ValueError(
|
198 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
199 |
+
f" and `num_heads`: {self.num_heads})."
|
200 |
+
)
|
201 |
+
self.scaling = self.head_dim**-0.5
|
202 |
+
self.is_decoder = is_decoder
|
203 |
+
|
204 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias)
|
205 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias)
|
206 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias)
|
207 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias)
|
208 |
+
|
209 |
+
# YB: capture the input and output of the softmax
|
210 |
+
self.attn_scores = nn.Identity() # before attention mask
|
211 |
+
self.attn_probs_before_dropout = nn.Identity()
|
212 |
+
self.attn_probs_after_dropout = nn.Identity()
|
213 |
+
|
214 |
+
self.alpha = alpha
|
215 |
+
self.max_seq_length = max_seq_length
|
216 |
+
self.ssm_eps = ssm_eps
|
217 |
+
self.tau = tau
|
218 |
+
self.attn_softmax = attn_softmax
|
219 |
+
|
220 |
+
# define softmax function
|
221 |
+
if self.alpha is not None:
|
222 |
+
assert self.max_seq_length is not None
|
223 |
+
gamma = -self.alpha / self.max_seq_length
|
224 |
+
if self.attn_softmax is "softmax1":
|
225 |
+
print("Using clipped Softmax_1!")
|
226 |
+
self.softmax_fn = partial(
|
227 |
+
clipped_softmax1, gamma=gamma, eta=1.0)
|
228 |
+
else:
|
229 |
+
self.softmax_fn = partial(
|
230 |
+
clipped_softmax, gamma=gamma, eta=1.0)
|
231 |
+
else:
|
232 |
+
self.softmax_fn = softmax_fn
|
233 |
+
|
234 |
+
self.skip_attn = skip_attn
|
235 |
+
|
236 |
+
# attention gating
|
237 |
+
self.last_gate_avg_prob = None
|
238 |
+
self.last_gate_all_probs = None
|
239 |
+
|
240 |
+
self.attn_gate_type = attn_gate_type
|
241 |
+
self.attn_gate_init = attn_gate_init
|
242 |
+
self.attn_gate_mlp = attn_gate_mlp
|
243 |
+
self.attn_gate_mlp2 = attn_gate_mlp2
|
244 |
+
self.attn_gate_linear_all_features = attn_gate_linear_all_features
|
245 |
+
|
246 |
+
self.alpha = None
|
247 |
+
self.ssm_eps = ssm_eps
|
248 |
+
self.gate_fn = torch.sigmoid
|
249 |
+
self.pooling_fn = partial(torch.mean, dim=1, keepdims=True)
|
250 |
+
|
251 |
+
self.fine_tuning = fine_tuning
|
252 |
+
|
253 |
+
# gate scaling factor
|
254 |
+
self.gate_scaling_factor = 1.0
|
255 |
+
if self.fine_tuning and self.attn_gate_init is not None:
|
256 |
+
self.gate_scaling_factor = 1.0 / self.attn_gate_init
|
257 |
+
|
258 |
+
# define gate
|
259 |
+
if self.attn_gate_type == AttentionGateType.unconditional_per_head:
|
260 |
+
init_alpha = torch.zeros(size=(self.num_heads,))
|
261 |
+
self.alpha = nn.Parameter(init_alpha, requires_grad=True)
|
262 |
+
|
263 |
+
elif self.attn_gate_type in (
|
264 |
+
AttentionGateType.conditional_per_head,
|
265 |
+
AttentionGateType.conditional_per_token,
|
266 |
+
):
|
267 |
+
if self.attn_gate_linear_all_features:
|
268 |
+
self.alpha = nn.Linear(
|
269 |
+
self.embed_dim, self.num_heads, bias=True)
|
270 |
+
|
271 |
+
else: # separate predictors for each head
|
272 |
+
module_list = []
|
273 |
+
for _ in range(self.num_heads):
|
274 |
+
if self.attn_gate_mlp:
|
275 |
+
fc = nn.Sequential(
|
276 |
+
nn.Linear(self.head_dim,
|
277 |
+
self.head_dim // 4, bias=True),
|
278 |
+
nn.ReLU(),
|
279 |
+
nn.Linear(self.head_dim // 4, 1, bias=True),
|
280 |
+
)
|
281 |
+
elif self.attn_gate_mlp2:
|
282 |
+
fc = nn.Sequential(
|
283 |
+
nn.Linear(self.head_dim, self.head_dim, bias=True),
|
284 |
+
nn.ReLU(),
|
285 |
+
nn.Linear(self.head_dim, 1, bias=True),
|
286 |
+
)
|
287 |
+
else:
|
288 |
+
fc = nn.Linear(self.head_dim, 1, bias=True)
|
289 |
+
|
290 |
+
if self.attn_gate_init is not None:
|
291 |
+
init_bias = logit(self.attn_gate_init)
|
292 |
+
torch.nn.init.constant_(fc.bias, init_bias)
|
293 |
+
|
294 |
+
if self.fine_tuning:
|
295 |
+
# init to a very small values
|
296 |
+
torch.nn.init.normal_(
|
297 |
+
fc.weight, mean=0.0, std=0.001)
|
298 |
+
|
299 |
+
module_list.append(fc)
|
300 |
+
self.alpha = nn.ModuleList(module_list)
|
301 |
+
|
302 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
303 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
304 |
+
|
305 |
+
def forward(
|
306 |
+
self,
|
307 |
+
hidden_states: torch.Tensor,
|
308 |
+
key_value_states: Optional[torch.Tensor] = None,
|
309 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
310 |
+
attention_mask: Optional[torch.Tensor] = None,
|
311 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
312 |
+
output_attentions: bool = False,
|
313 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
314 |
+
"""Input shape: Batch x Time x Channel"""
|
315 |
+
|
316 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
317 |
+
# for the decoder
|
318 |
+
is_cross_attention = key_value_states is not None
|
319 |
+
|
320 |
+
bsz, tgt_len, _ = hidden_states.size()
|
321 |
+
|
322 |
+
# get query proj
|
323 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
324 |
+
# get key, value proj
|
325 |
+
if is_cross_attention and past_key_value is not None:
|
326 |
+
# reuse k,v, cross_attentions
|
327 |
+
key_states = past_key_value[0]
|
328 |
+
value_states = past_key_value[1]
|
329 |
+
elif is_cross_attention:
|
330 |
+
# cross_attentions
|
331 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
332 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
333 |
+
elif past_key_value is not None:
|
334 |
+
# reuse k, v, self_attention
|
335 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
336 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
337 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
338 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
339 |
+
else:
|
340 |
+
# self_attention
|
341 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
342 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
343 |
+
|
344 |
+
if self.is_decoder:
|
345 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
346 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
347 |
+
# key/value_states (first "if" case)
|
348 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
349 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
350 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
351 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
352 |
+
past_key_value = (key_states, value_states)
|
353 |
+
|
354 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
355 |
+
query_states = self._shape(
|
356 |
+
query_states, tgt_len, bsz).view(*proj_shape)
|
357 |
+
key_states = key_states.view(*proj_shape)
|
358 |
+
value_states = value_states.view(*proj_shape)
|
359 |
+
|
360 |
+
src_len = key_states.size(1)
|
361 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
362 |
+
|
363 |
+
# YB: for logging softmax input
|
364 |
+
attn_weights = self.attn_scores(attn_weights)
|
365 |
+
|
366 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
367 |
+
raise ValueError(
|
368 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
369 |
+
f" {attn_weights.size()}"
|
370 |
+
)
|
371 |
+
|
372 |
+
if attention_mask is not None:
|
373 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
374 |
+
raise ValueError(
|
375 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
376 |
+
)
|
377 |
+
attn_weights = attn_weights.view(
|
378 |
+
bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
379 |
+
attn_weights = torch.max(
|
380 |
+
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
381 |
+
)
|
382 |
+
attn_weights = attn_weights.view(
|
383 |
+
bsz * self.num_heads, tgt_len, src_len)
|
384 |
+
|
385 |
+
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
|
386 |
+
if attn_weights.dtype == torch.float16:
|
387 |
+
attn_weights = self.softmax_fn(attn_weights, dim=-1, dtype=torch.float32).to(
|
388 |
+
torch.float16
|
389 |
+
)
|
390 |
+
else:
|
391 |
+
attn_weights = self.softmax_fn(attn_weights, dim=-1)
|
392 |
+
|
393 |
+
if layer_head_mask is not None:
|
394 |
+
if layer_head_mask.size() != (self.num_heads,):
|
395 |
+
raise ValueError(
|
396 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
397 |
+
f" {layer_head_mask.size()}"
|
398 |
+
)
|
399 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
|
400 |
+
bsz, self.num_heads, tgt_len, src_len
|
401 |
+
)
|
402 |
+
attn_weights = attn_weights.view(
|
403 |
+
bsz * self.num_heads, tgt_len, src_len)
|
404 |
+
|
405 |
+
if output_attentions:
|
406 |
+
# this operation is a bit awkward, but it's required to
|
407 |
+
# make sure that attn_weights keeps its gradient.
|
408 |
+
# In order to do so, attn_weights have to be reshaped
|
409 |
+
# twice and have to be reused in the following
|
410 |
+
attn_weights_reshaped = attn_weights.view(
|
411 |
+
bsz, self.num_heads, tgt_len, src_len)
|
412 |
+
attn_weights = attn_weights_reshaped.view(
|
413 |
+
bsz * self.num_heads, tgt_len, src_len)
|
414 |
+
else:
|
415 |
+
attn_weights_reshaped = None
|
416 |
+
|
417 |
+
# YB: for logging softmax output
|
418 |
+
attn_weights = self.attn_probs_before_dropout(attn_weights)
|
419 |
+
|
420 |
+
attn_probs = nn.functional.dropout(
|
421 |
+
attn_weights, p=self.dropout, training=self.training)
|
422 |
+
|
423 |
+
# YB: for logging softmax output
|
424 |
+
attn_probs = self.attn_probs_after_dropout(attn_probs)
|
425 |
+
|
426 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
427 |
+
|
428 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
429 |
+
raise ValueError(
|
430 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
431 |
+
f" {attn_output.size()}"
|
432 |
+
)
|
433 |
+
|
434 |
+
attn_output = attn_output.view(
|
435 |
+
bsz, self.num_heads, tgt_len, self.head_dim)
|
436 |
+
# attn_output - (B, H, T, d_head)
|
437 |
+
|
438 |
+
#
|
439 |
+
# *** Gating ***
|
440 |
+
if self.attn_gate_type == AttentionGateType.unconditional_per_head:
|
441 |
+
gate = self.gate_fn(self.alpha) # (H,)
|
442 |
+
attn_output *= gate.view(-1, 1, 1) # (B, H, T, d_head)
|
443 |
+
|
444 |
+
self.last_gate_avg_prob = gate.view(-1)
|
445 |
+
|
446 |
+
elif self.attn_gate_type in (
|
447 |
+
AttentionGateType.conditional_per_head,
|
448 |
+
AttentionGateType.conditional_per_token,
|
449 |
+
):
|
450 |
+
x = hidden_states # (B, T, d_model)
|
451 |
+
|
452 |
+
if self.attn_gate_linear_all_features: # assume per_token
|
453 |
+
alpha = self.alpha(x) # (B, T, H)
|
454 |
+
gate = self.gate_fn(alpha)
|
455 |
+
gate = gate.permute(0, 2, 1).contiguous() # (B, H, T)
|
456 |
+
gate = gate.unsqueeze(3) # (B, H, T, 1)
|
457 |
+
|
458 |
+
else:
|
459 |
+
# x = self.transpose_for_scores(x) # (B, H, T, d_head)
|
460 |
+
x = self._shape(x, -1, bsz) # (B, H, T, d_head)
|
461 |
+
|
462 |
+
alpha = []
|
463 |
+
for head_idx in range(self.num_heads):
|
464 |
+
x_head = x[:, head_idx, ...] # (B, T, d_head)
|
465 |
+
fc_head = self.alpha[head_idx]
|
466 |
+
alpha_head = fc_head(x_head) # (B, T, 1)
|
467 |
+
if self.attn_gate_type == AttentionGateType.conditional_per_head:
|
468 |
+
alpha_head = self.pooling_fn(alpha_head) # (B, 1, 1)
|
469 |
+
alpha.append(alpha_head)
|
470 |
+
alpha = torch.stack(alpha, dim=1) # (B, H, *, 1)
|
471 |
+
gate = self.gate_fn(alpha)
|
472 |
+
|
473 |
+
attn_output *= gate * self.gate_scaling_factor
|
474 |
+
|
475 |
+
self.last_gate_all_probs = gate # all gates to see the distributions
|
476 |
+
avg_gate = gate.mean(dim=0)
|
477 |
+
self.last_gate_avg_prob = avg_gate.view(
|
478 |
+
self.num_heads, -1).mean(dim=1)
|
479 |
+
|
480 |
+
#
|
481 |
+
# <end elif>
|
482 |
+
|
483 |
+
attn_output = attn_output.transpose(1, 2)
|
484 |
+
|
485 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
486 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
487 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
488 |
+
|
489 |
+
attn_output = self.out_proj(attn_output)
|
490 |
+
|
491 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
492 |
+
|
493 |
+
|
494 |
+
class OptFlashAttention2(OPTAttention):
|
495 |
+
"""
|
496 |
+
OPT flash attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched.
|
497 |
+
The only required change would be on the forward pass where it needs to correctly call the public API of flash
|
498 |
+
attention and deal with padding tokens in case the input contains any of them.
|
499 |
+
"""
|
500 |
+
|
501 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
502 |
+
def __init__(self, *args, **kwargs):
|
503 |
+
super().__init__(*args, **kwargs)
|
504 |
+
|
505 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
506 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
507 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
508 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
509 |
+
|
510 |
+
def forward(
|
511 |
+
self,
|
512 |
+
hidden_states: torch.Tensor,
|
513 |
+
key_value_states: Optional[torch.Tensor] = None,
|
514 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
515 |
+
attention_mask: Optional[torch.Tensor] = None,
|
516 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
517 |
+
output_attentions: bool = False,
|
518 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
519 |
+
"""Input shape: Batch x Time x Channel"""
|
520 |
+
|
521 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
522 |
+
# for the decoder
|
523 |
+
is_cross_attention = key_value_states is not None
|
524 |
+
|
525 |
+
bsz, _, _ = hidden_states.size()
|
526 |
+
|
527 |
+
# get query proj
|
528 |
+
query_states = self.q_proj(hidden_states)
|
529 |
+
# get key, value proj
|
530 |
+
if is_cross_attention and past_key_value is not None:
|
531 |
+
# reuse k,v, cross_attentions
|
532 |
+
key_states = past_key_value[0]
|
533 |
+
value_states = past_key_value[1]
|
534 |
+
elif is_cross_attention:
|
535 |
+
# cross_attentions
|
536 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
537 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
538 |
+
elif past_key_value is not None:
|
539 |
+
# reuse k, v, self_attention
|
540 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
541 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
542 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
543 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
544 |
+
else:
|
545 |
+
# self_attention
|
546 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
547 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
548 |
+
|
549 |
+
if self.is_decoder:
|
550 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
551 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
552 |
+
# key/value_states (first "if" case)
|
553 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
554 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
555 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
556 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
557 |
+
past_key_value = (key_states, value_states)
|
558 |
+
|
559 |
+
query_length = query_states.shape[1]
|
560 |
+
tgt_len = key_states.shape[-2]
|
561 |
+
|
562 |
+
# Flash attention requires the input to have the shape
|
563 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
564 |
+
query_states = query_states.view(
|
565 |
+
bsz, query_length, self.num_heads, self.head_dim)
|
566 |
+
key_states = key_states.transpose(1, 2).view(
|
567 |
+
bsz, tgt_len, self.num_heads, self.head_dim)
|
568 |
+
value_states = value_states.transpose(1, 2).view(
|
569 |
+
bsz, tgt_len, self.num_heads, self.head_dim)
|
570 |
+
|
571 |
+
attn_dropout = self.dropout if self.training else 0.0
|
572 |
+
|
573 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
574 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
575 |
+
# cast them back in float16 just to be sure everything works as expected.
|
576 |
+
input_dtype = query_states.dtype
|
577 |
+
if input_dtype == torch.float32:
|
578 |
+
if torch.is_autocast_enabled():
|
579 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
580 |
+
# Handle the case where the model is quantized
|
581 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
582 |
+
target_dtype = self.config._pre_quantization_dtype
|
583 |
+
else:
|
584 |
+
target_dtype = self.q_proj.weight.dtype
|
585 |
+
|
586 |
+
logger.warning_once(
|
587 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
588 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
589 |
+
f" {target_dtype}."
|
590 |
+
)
|
591 |
+
|
592 |
+
query_states = query_states.to(target_dtype)
|
593 |
+
key_states = key_states.to(target_dtype)
|
594 |
+
value_states = value_states.to(target_dtype)
|
595 |
+
|
596 |
+
attn_output = self._flash_attention_forward(
|
597 |
+
query_states, key_states, value_states, attention_mask, query_length, dropout=attn_dropout
|
598 |
+
)
|
599 |
+
|
600 |
+
attn_weights_reshaped = attn_output.reshape(
|
601 |
+
bsz, query_length, self.num_heads * self.head_dim)
|
602 |
+
attn_output = self.out_proj(attn_weights_reshaped)
|
603 |
+
|
604 |
+
if not output_attentions:
|
605 |
+
attn_weights_reshaped = None
|
606 |
+
|
607 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
608 |
+
|
609 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
610 |
+
def _flash_attention_forward(
|
611 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
612 |
+
):
|
613 |
+
"""
|
614 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
615 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
616 |
+
|
617 |
+
Args:
|
618 |
+
query_states (`torch.Tensor`):
|
619 |
+
Input query states to be passed to Flash Attention API
|
620 |
+
key_states (`torch.Tensor`):
|
621 |
+
Input key states to be passed to Flash Attention API
|
622 |
+
value_states (`torch.Tensor`):
|
623 |
+
Input value states to be passed to Flash Attention API
|
624 |
+
attention_mask (`torch.Tensor`):
|
625 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
626 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
627 |
+
dropout (`float`):
|
628 |
+
Attention dropout
|
629 |
+
softmax_scale (`float`, *optional*):
|
630 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
631 |
+
"""
|
632 |
+
if not self._flash_attn_uses_top_left_mask:
|
633 |
+
causal = self.is_causal
|
634 |
+
else:
|
635 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
636 |
+
causal = self.is_causal and query_length != 1
|
637 |
+
|
638 |
+
# Contains at least one padding token in the sequence
|
639 |
+
if attention_mask is not None:
|
640 |
+
batch_size = query_states.shape[0]
|
641 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
642 |
+
query_states, key_states, value_states, attention_mask, query_length
|
643 |
+
)
|
644 |
+
|
645 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
646 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
647 |
+
|
648 |
+
attn_output_unpad = flash_attn_varlen_func(
|
649 |
+
query_states,
|
650 |
+
key_states,
|
651 |
+
value_states,
|
652 |
+
cu_seqlens_q=cu_seqlens_q,
|
653 |
+
cu_seqlens_k=cu_seqlens_k,
|
654 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
655 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
656 |
+
dropout_p=dropout,
|
657 |
+
softmax_scale=softmax_scale,
|
658 |
+
causal=causal,
|
659 |
+
)
|
660 |
+
|
661 |
+
attn_output = pad_input(
|
662 |
+
attn_output_unpad, indices_q, batch_size, query_length)
|
663 |
+
else:
|
664 |
+
attn_output = flash_attn_func(
|
665 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
666 |
+
)
|
667 |
+
|
668 |
+
return attn_output
|
669 |
+
|
670 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
671 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
672 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
|
673 |
+
attention_mask)
|
674 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
675 |
+
|
676 |
+
key_layer = index_first_axis(
|
677 |
+
key_layer.reshape(batch_size * kv_seq_len,
|
678 |
+
num_key_value_heads, head_dim), indices_k
|
679 |
+
)
|
680 |
+
value_layer = index_first_axis(
|
681 |
+
value_layer.reshape(batch_size * kv_seq_len,
|
682 |
+
num_key_value_heads, head_dim), indices_k
|
683 |
+
)
|
684 |
+
if query_length == kv_seq_len:
|
685 |
+
query_layer = index_first_axis(
|
686 |
+
query_layer.reshape(batch_size * kv_seq_len,
|
687 |
+
self.num_heads, head_dim), indices_k
|
688 |
+
)
|
689 |
+
cu_seqlens_q = cu_seqlens_k
|
690 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
691 |
+
indices_q = indices_k
|
692 |
+
elif query_length == 1:
|
693 |
+
max_seqlen_in_batch_q = 1
|
694 |
+
cu_seqlens_q = torch.arange(
|
695 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
696 |
+
) # There is a memcpy here, that is very bad.
|
697 |
+
indices_q = cu_seqlens_q[:-1]
|
698 |
+
query_layer = query_layer.squeeze(1)
|
699 |
+
else:
|
700 |
+
# The -q_len: slice assumes left padding.
|
701 |
+
attention_mask = attention_mask[:, -query_length:]
|
702 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
703 |
+
query_layer, attention_mask)
|
704 |
+
|
705 |
+
return (
|
706 |
+
query_layer,
|
707 |
+
key_layer,
|
708 |
+
value_layer,
|
709 |
+
indices_q,
|
710 |
+
(cu_seqlens_q, cu_seqlens_k),
|
711 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
712 |
+
)
|
713 |
+
|
714 |
+
|
715 |
+
OPT_ATTENTION_CLASSES = {
|
716 |
+
"eager": OPTAttention,
|
717 |
+
"flash_attention_2": OptFlashAttention2,
|
718 |
+
}
|
719 |
+
|
720 |
+
|
721 |
+
class OPTDecoderLayer(nn.Module):
|
722 |
+
def __init__(self, config: OPTConfig):
|
723 |
+
super().__init__()
|
724 |
+
self.embed_dim = config.hidden_size
|
725 |
+
|
726 |
+
self.self_attn = OPTAttention(
|
727 |
+
config=config, is_decoder=True)
|
728 |
+
|
729 |
+
self.do_layer_norm_before = config.do_layer_norm_before
|
730 |
+
self.dropout = config.dropout
|
731 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
732 |
+
|
733 |
+
self.self_attn_layer_norm = nn.LayerNorm(
|
734 |
+
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine
|
735 |
+
)
|
736 |
+
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim,
|
737 |
+
bias=config.enable_bias)
|
738 |
+
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim,
|
739 |
+
bias=config.enable_bias)
|
740 |
+
self.final_layer_norm = nn.LayerNorm(
|
741 |
+
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
|
742 |
+
|
743 |
+
def forward(
|
744 |
+
self,
|
745 |
+
hidden_states: torch.Tensor,
|
746 |
+
attention_mask: Optional[torch.Tensor] = None,
|
747 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
748 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
749 |
+
output_attentions: Optional[bool] = False,
|
750 |
+
use_cache: Optional[bool] = False,
|
751 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
752 |
+
"""
|
753 |
+
Args:
|
754 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
755 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
756 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
757 |
+
layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
|
758 |
+
`(encoder_attention_heads,)`.
|
759 |
+
output_attentions (`bool`, *optional*):
|
760 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
761 |
+
returned tensors for more detail.
|
762 |
+
use_cache (`bool`, *optional*):
|
763 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
764 |
+
(see `past_key_values`).
|
765 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
766 |
+
"""
|
767 |
+
|
768 |
+
residual = hidden_states
|
769 |
+
|
770 |
+
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
771 |
+
if self.do_layer_norm_before:
|
772 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
773 |
+
|
774 |
+
# Self Attention
|
775 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
776 |
+
hidden_states=hidden_states,
|
777 |
+
past_key_value=past_key_value,
|
778 |
+
attention_mask=attention_mask,
|
779 |
+
layer_head_mask=layer_head_mask,
|
780 |
+
output_attentions=output_attentions,
|
781 |
+
)
|
782 |
+
hidden_states = nn.functional.dropout(
|
783 |
+
hidden_states, p=self.dropout, training=self.training)
|
784 |
+
hidden_states = residual + hidden_states
|
785 |
+
|
786 |
+
# 350m applies layer norm AFTER attention
|
787 |
+
if not self.do_layer_norm_before:
|
788 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
789 |
+
|
790 |
+
# Fully Connected
|
791 |
+
hidden_states_shape = hidden_states.shape
|
792 |
+
hidden_states = hidden_states.reshape(-1, hidden_states.size(-1))
|
793 |
+
residual = hidden_states
|
794 |
+
|
795 |
+
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
|
796 |
+
if self.do_layer_norm_before:
|
797 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
798 |
+
|
799 |
+
hidden_states = self.fc1(hidden_states)
|
800 |
+
hidden_states = self.activation_fn(hidden_states)
|
801 |
+
|
802 |
+
hidden_states = self.fc2(hidden_states)
|
803 |
+
hidden_states = nn.functional.dropout(
|
804 |
+
hidden_states, p=self.dropout, training=self.training)
|
805 |
+
|
806 |
+
hidden_states = (residual + hidden_states).view(hidden_states_shape)
|
807 |
+
|
808 |
+
# 350m applies layer norm AFTER attention
|
809 |
+
if not self.do_layer_norm_before:
|
810 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
811 |
+
|
812 |
+
outputs = (hidden_states,)
|
813 |
+
|
814 |
+
if output_attentions:
|
815 |
+
outputs += (self_attn_weights,)
|
816 |
+
|
817 |
+
if use_cache:
|
818 |
+
outputs += (present_key_value,)
|
819 |
+
|
820 |
+
return outputs
|
821 |
+
|
822 |
+
|
823 |
+
OPT_START_DOCSTRING = r"""
|
824 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
825 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
826 |
+
etc.)
|
827 |
+
|
828 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
829 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
830 |
+
and behavior.
|
831 |
+
|
832 |
+
Parameters:
|
833 |
+
config ([`OPTConfig`]):
|
834 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
835 |
+
load the weights associated with the model, only the configuration. Check out the
|
836 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
837 |
+
"""
|
838 |
+
|
839 |
+
|
840 |
+
@add_start_docstrings(
|
841 |
+
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
|
842 |
+
OPT_START_DOCSTRING,
|
843 |
+
)
|
844 |
+
class OPTPreTrainedModel(PreTrainedModel):
|
845 |
+
config_class = OPTConfig
|
846 |
+
base_model_prefix = "model"
|
847 |
+
supports_gradient_checkpointing = True
|
848 |
+
_no_split_modules = ["OPTDecoderLayer"]
|
849 |
+
_supports_flash_attn_2 = True
|
850 |
+
|
851 |
+
def _init_weights(self, module):
|
852 |
+
std = self.config.init_std
|
853 |
+
if isinstance(module, nn.Linear):
|
854 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
855 |
+
if module.bias is not None:
|
856 |
+
module.bias.data.zero_()
|
857 |
+
elif isinstance(module, nn.Embedding):
|
858 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
859 |
+
if module.padding_idx is not None:
|
860 |
+
module.weight.data[module.padding_idx].zero_()
|
861 |
+
|
862 |
+
|
863 |
+
OPT_INPUTS_DOCSTRING = r"""
|
864 |
+
Args:
|
865 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
866 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
867 |
+
it.
|
868 |
+
|
869 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
870 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
871 |
+
|
872 |
+
[What are input IDs?](../glossary#input-ids)
|
873 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
874 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
875 |
+
|
876 |
+
- 1 for tokens that are **not masked**,
|
877 |
+
- 0 for tokens that are **masked**.
|
878 |
+
|
879 |
+
[What are attention masks?](../glossary#attention-mask)
|
880 |
+
|
881 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
882 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
883 |
+
|
884 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
885 |
+
`past_key_values`).
|
886 |
+
|
887 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
888 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
889 |
+
information on the default strategy.
|
890 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
891 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
892 |
+
|
893 |
+
- 1 indicates the head is **not masked**,
|
894 |
+
- 0 indicates the head is **masked**.
|
895 |
+
|
896 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
897 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
898 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
899 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
900 |
+
|
901 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
902 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
903 |
+
|
904 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
905 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
906 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
907 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
908 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
909 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
910 |
+
model's internal embedding lookup matrix.
|
911 |
+
use_cache (`bool`, *optional*):
|
912 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
913 |
+
`past_key_values`).
|
914 |
+
output_attentions (`bool`, *optional*):
|
915 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
916 |
+
tensors for more detail.
|
917 |
+
output_hidden_states (`bool`, *optional*):
|
918 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
919 |
+
more detail.
|
920 |
+
return_dict (`bool`, *optional*):
|
921 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
922 |
+
"""
|
923 |
+
|
924 |
+
|
925 |
+
class OPTDecoder(OPTPreTrainedModel):
|
926 |
+
"""
|
927 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`]
|
928 |
+
|
929 |
+
Args:
|
930 |
+
config: OPTConfig
|
931 |
+
"""
|
932 |
+
|
933 |
+
def __init__(self, config: OPTConfig):
|
934 |
+
super().__init__(config)
|
935 |
+
self.dropout = config.dropout
|
936 |
+
self.layerdrop = config.layerdrop
|
937 |
+
self.padding_idx = config.pad_token_id
|
938 |
+
self.max_target_positions = config.max_position_embeddings
|
939 |
+
self.vocab_size = config.vocab_size
|
940 |
+
|
941 |
+
self.embed_tokens = nn.Embedding(
|
942 |
+
config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
|
943 |
+
self.embed_positions = OPTLearnedPositionalEmbedding(
|
944 |
+
config.max_position_embeddings, config.hidden_size)
|
945 |
+
|
946 |
+
if config.word_embed_proj_dim != config.hidden_size:
|
947 |
+
self.project_out = nn.Linear(
|
948 |
+
config.hidden_size, config.word_embed_proj_dim, bias=False)
|
949 |
+
else:
|
950 |
+
self.project_out = None
|
951 |
+
|
952 |
+
if config.word_embed_proj_dim != config.hidden_size:
|
953 |
+
self.project_in = nn.Linear(
|
954 |
+
config.word_embed_proj_dim, config.hidden_size, bias=False)
|
955 |
+
else:
|
956 |
+
self.project_in = None
|
957 |
+
|
958 |
+
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
|
959 |
+
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
960 |
+
# see https://github.com/facebookresearch/metaseq/pull/164
|
961 |
+
if config.do_layer_norm_before and not config._remove_final_layer_norm:
|
962 |
+
self.final_layer_norm = nn.LayerNorm(
|
963 |
+
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
|
964 |
+
)
|
965 |
+
else:
|
966 |
+
self.final_layer_norm = None
|
967 |
+
|
968 |
+
self.layers = nn.ModuleList(
|
969 |
+
[OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
970 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
971 |
+
|
972 |
+
self.gradient_checkpointing = False
|
973 |
+
# Initialize weights and apply final processing
|
974 |
+
self.post_init()
|
975 |
+
|
976 |
+
def get_input_embeddings(self):
|
977 |
+
return self.embed_tokens
|
978 |
+
|
979 |
+
def set_input_embeddings(self, value):
|
980 |
+
self.embed_tokens = value
|
981 |
+
|
982 |
+
def forward(
|
983 |
+
self,
|
984 |
+
input_ids: torch.LongTensor = None,
|
985 |
+
attention_mask: Optional[torch.Tensor] = None,
|
986 |
+
head_mask: Optional[torch.Tensor] = None,
|
987 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
988 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
989 |
+
use_cache: Optional[bool] = None,
|
990 |
+
output_attentions: Optional[bool] = None,
|
991 |
+
output_hidden_states: Optional[bool] = None,
|
992 |
+
return_dict: Optional[bool] = None,
|
993 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
994 |
+
r"""
|
995 |
+
Args:
|
996 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
997 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
998 |
+
provide it.
|
999 |
+
|
1000 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1001 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1002 |
+
|
1003 |
+
[What are input IDs?](../glossary#input-ids)
|
1004 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1005 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1006 |
+
|
1007 |
+
- 1 for tokens that are **not masked**,
|
1008 |
+
- 0 for tokens that are **masked**.
|
1009 |
+
|
1010 |
+
[What are attention masks?](../glossary#attention-mask)
|
1011 |
+
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
1012 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1013 |
+
|
1014 |
+
- 1 indicates the head is **not masked**,
|
1015 |
+
- 0 indicates the head is **masked**.
|
1016 |
+
|
1017 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1018 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1019 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
1020 |
+
|
1021 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
1022 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1023 |
+
|
1024 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
1025 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
1026 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1027 |
+
|
1028 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1029 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1030 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1031 |
+
than the model's internal embedding lookup matrix.
|
1032 |
+
output_attentions (`bool`, *optional*):
|
1033 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1034 |
+
returned tensors for more detail.
|
1035 |
+
output_hidden_states (`bool`, *optional*):
|
1036 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1037 |
+
for more detail.
|
1038 |
+
return_dict (`bool`, *optional*):
|
1039 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1040 |
+
"""
|
1041 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1042 |
+
output_hidden_states = (
|
1043 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1044 |
+
)
|
1045 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1046 |
+
|
1047 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1048 |
+
|
1049 |
+
# retrieve input_ids and inputs_embeds
|
1050 |
+
if input_ids is not None and inputs_embeds is not None:
|
1051 |
+
raise ValueError(
|
1052 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1053 |
+
elif input_ids is not None:
|
1054 |
+
input_shape = input_ids.size()
|
1055 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1056 |
+
elif inputs_embeds is not None:
|
1057 |
+
input_shape = inputs_embeds.size()[:-1]
|
1058 |
+
else:
|
1059 |
+
raise ValueError(
|
1060 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1061 |
+
|
1062 |
+
if inputs_embeds is None:
|
1063 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1064 |
+
|
1065 |
+
batch_size, seq_length = input_shape
|
1066 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1067 |
+
# required mask seq length can be calculated via length of past
|
1068 |
+
mask_seq_length = past_key_values_length + seq_length
|
1069 |
+
|
1070 |
+
# embed positions
|
1071 |
+
if self._use_flash_attention_2:
|
1072 |
+
# 2d mask is passed through the layers
|
1073 |
+
causal_attention_mask = attention_mask if (
|
1074 |
+
attention_mask is not None and 0 in attention_mask) else None
|
1075 |
+
attention_mask = (
|
1076 |
+
torch.ones(batch_size, mask_seq_length,
|
1077 |
+
device=inputs_embeds.device)
|
1078 |
+
if attention_mask is None
|
1079 |
+
else attention_mask
|
1080 |
+
)
|
1081 |
+
else:
|
1082 |
+
# 4d mask is passed through the layers
|
1083 |
+
if attention_mask is None:
|
1084 |
+
attention_mask = torch.ones(
|
1085 |
+
batch_size, mask_seq_length, device=inputs_embeds.device)
|
1086 |
+
elif attention_mask.shape[1] != mask_seq_length:
|
1087 |
+
raise ValueError(
|
1088 |
+
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
|
1089 |
+
f"{mask_seq_length} (sum of the lengths of current and past inputs)"
|
1090 |
+
)
|
1091 |
+
causal_attention_mask = _prepare_4d_causal_attention_mask(
|
1092 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
pos_embeds = self.embed_positions(
|
1096 |
+
attention_mask, past_key_values_length)
|
1097 |
+
|
1098 |
+
if self.project_in is not None:
|
1099 |
+
inputs_embeds = self.project_in(inputs_embeds)
|
1100 |
+
|
1101 |
+
hidden_states = inputs_embeds + pos_embeds
|
1102 |
+
|
1103 |
+
if self.gradient_checkpointing and self.training:
|
1104 |
+
if use_cache:
|
1105 |
+
logger.warning_once(
|
1106 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1107 |
+
)
|
1108 |
+
use_cache = False
|
1109 |
+
|
1110 |
+
# decoder layers
|
1111 |
+
all_hidden_states = () if output_hidden_states else None
|
1112 |
+
all_self_attns = () if output_attentions else None
|
1113 |
+
next_decoder_cache = () if use_cache else None
|
1114 |
+
|
1115 |
+
# check if head_mask has a correct number of layers specified if desired
|
1116 |
+
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
|
1117 |
+
if attn_mask is not None:
|
1118 |
+
if attn_mask.size()[0] != (len(self.layers)):
|
1119 |
+
raise ValueError(
|
1120 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
1121 |
+
f" {head_mask.size()[0]}."
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1125 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1126 |
+
if output_hidden_states:
|
1127 |
+
all_hidden_states += (hidden_states,)
|
1128 |
+
|
1129 |
+
if self.training:
|
1130 |
+
dropout_probability = torch.rand([])
|
1131 |
+
if dropout_probability < self.layerdrop:
|
1132 |
+
continue
|
1133 |
+
|
1134 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1135 |
+
|
1136 |
+
if self.gradient_checkpointing and self.training:
|
1137 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1138 |
+
decoder_layer.__call__,
|
1139 |
+
hidden_states,
|
1140 |
+
causal_attention_mask,
|
1141 |
+
head_mask[idx] if head_mask is not None else None,
|
1142 |
+
None,
|
1143 |
+
output_attentions,
|
1144 |
+
use_cache,
|
1145 |
+
)
|
1146 |
+
else:
|
1147 |
+
layer_outputs = decoder_layer(
|
1148 |
+
hidden_states,
|
1149 |
+
attention_mask=causal_attention_mask,
|
1150 |
+
layer_head_mask=(
|
1151 |
+
head_mask[idx] if head_mask is not None else None),
|
1152 |
+
past_key_value=past_key_value,
|
1153 |
+
output_attentions=output_attentions,
|
1154 |
+
use_cache=use_cache,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
hidden_states = layer_outputs[0]
|
1158 |
+
|
1159 |
+
if use_cache:
|
1160 |
+
next_decoder_cache += (
|
1161 |
+
layer_outputs[2 if output_attentions else 1],)
|
1162 |
+
|
1163 |
+
if output_attentions:
|
1164 |
+
all_self_attns += (layer_outputs[1],)
|
1165 |
+
|
1166 |
+
if self.final_layer_norm is not None:
|
1167 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1168 |
+
|
1169 |
+
if self.project_out is not None:
|
1170 |
+
hidden_states = self.project_out(hidden_states)
|
1171 |
+
|
1172 |
+
# add hidden states from the last decoder layer
|
1173 |
+
if output_hidden_states:
|
1174 |
+
all_hidden_states += (hidden_states,)
|
1175 |
+
|
1176 |
+
next_cache = next_decoder_cache if use_cache else None
|
1177 |
+
if not return_dict:
|
1178 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1179 |
+
return BaseModelOutputWithPast(
|
1180 |
+
last_hidden_state=hidden_states,
|
1181 |
+
past_key_values=next_cache,
|
1182 |
+
hidden_states=all_hidden_states,
|
1183 |
+
attentions=all_self_attns,
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
|
1187 |
+
@add_start_docstrings(
|
1188 |
+
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
|
1189 |
+
OPT_START_DOCSTRING,
|
1190 |
+
)
|
1191 |
+
class OPTModel(OPTPreTrainedModel):
|
1192 |
+
def __init__(self, config: OPTConfig):
|
1193 |
+
super().__init__(config)
|
1194 |
+
self.decoder = OPTDecoder(config)
|
1195 |
+
# Initialize weights and apply final processing
|
1196 |
+
self.post_init()
|
1197 |
+
|
1198 |
+
def get_input_embeddings(self):
|
1199 |
+
return self.decoder.embed_tokens
|
1200 |
+
|
1201 |
+
def set_input_embeddings(self, value):
|
1202 |
+
self.decoder.embed_tokens = value
|
1203 |
+
|
1204 |
+
def get_decoder(self):
|
1205 |
+
return self.decoder
|
1206 |
+
|
1207 |
+
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
|
1208 |
+
@add_code_sample_docstrings(
|
1209 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1210 |
+
output_type=BaseModelOutputWithPast,
|
1211 |
+
config_class=_CONFIG_FOR_DOC,
|
1212 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
1213 |
+
)
|
1214 |
+
def forward(
|
1215 |
+
self,
|
1216 |
+
input_ids: torch.LongTensor = None,
|
1217 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1218 |
+
head_mask: Optional[torch.Tensor] = None,
|
1219 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1220 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1221 |
+
use_cache: Optional[bool] = None,
|
1222 |
+
output_attentions: Optional[bool] = None,
|
1223 |
+
output_hidden_states: Optional[bool] = None,
|
1224 |
+
return_dict: Optional[bool] = None,
|
1225 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1226 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1227 |
+
output_hidden_states = (
|
1228 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1229 |
+
)
|
1230 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1231 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1232 |
+
|
1233 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1234 |
+
decoder_outputs = self.decoder(
|
1235 |
+
input_ids=input_ids,
|
1236 |
+
attention_mask=attention_mask,
|
1237 |
+
head_mask=head_mask,
|
1238 |
+
past_key_values=past_key_values,
|
1239 |
+
inputs_embeds=inputs_embeds,
|
1240 |
+
use_cache=use_cache,
|
1241 |
+
output_attentions=output_attentions,
|
1242 |
+
output_hidden_states=output_hidden_states,
|
1243 |
+
return_dict=return_dict,
|
1244 |
+
)
|
1245 |
+
|
1246 |
+
if not return_dict:
|
1247 |
+
return decoder_outputs
|
1248 |
+
|
1249 |
+
return BaseModelOutputWithPast(
|
1250 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1251 |
+
past_key_values=decoder_outputs.past_key_values,
|
1252 |
+
hidden_states=decoder_outputs.hidden_states,
|
1253 |
+
attentions=decoder_outputs.attentions,
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
|
1257 |
+
class OPTForCausalLM(OPTPreTrainedModel):
|
1258 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1259 |
+
|
1260 |
+
def __init__(self, config):
|
1261 |
+
super().__init__(config)
|
1262 |
+
self.model = OPTModel(config)
|
1263 |
+
|
1264 |
+
# the lm_head weight is automatically tied to the embed tokens weight
|
1265 |
+
self.lm_head = nn.Linear(
|
1266 |
+
config.word_embed_proj_dim, config.vocab_size, bias=False)
|
1267 |
+
|
1268 |
+
# Initialize weights and apply final processing
|
1269 |
+
self.post_init()
|
1270 |
+
|
1271 |
+
def get_input_embeddings(self):
|
1272 |
+
return self.model.decoder.embed_tokens
|
1273 |
+
|
1274 |
+
def set_input_embeddings(self, value):
|
1275 |
+
self.model.decoder.embed_tokens = value
|
1276 |
+
|
1277 |
+
def get_output_embeddings(self):
|
1278 |
+
return self.lm_head
|
1279 |
+
|
1280 |
+
def set_output_embeddings(self, new_embeddings):
|
1281 |
+
self.lm_head = new_embeddings
|
1282 |
+
|
1283 |
+
def set_decoder(self, decoder):
|
1284 |
+
self.model.decoder = decoder
|
1285 |
+
|
1286 |
+
def get_decoder(self):
|
1287 |
+
return self.model.decoder
|
1288 |
+
|
1289 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1290 |
+
def forward(
|
1291 |
+
self,
|
1292 |
+
input_ids: torch.LongTensor = None,
|
1293 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1294 |
+
head_mask: Optional[torch.Tensor] = None,
|
1295 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1296 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1297 |
+
labels: Optional[torch.LongTensor] = None,
|
1298 |
+
use_cache: Optional[bool] = None,
|
1299 |
+
output_attentions: Optional[bool] = None,
|
1300 |
+
output_hidden_states: Optional[bool] = None,
|
1301 |
+
return_dict: Optional[bool] = None,
|
1302 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1303 |
+
r"""
|
1304 |
+
Args:
|
1305 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1306 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1307 |
+
provide it.
|
1308 |
+
|
1309 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1310 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1311 |
+
|
1312 |
+
[What are input IDs?](../glossary#input-ids)
|
1313 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1314 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1315 |
+
|
1316 |
+
- 1 for tokens that are **not masked**,
|
1317 |
+
- 0 for tokens that are **masked**.
|
1318 |
+
|
1319 |
+
[What are attention masks?](../glossary#attention-mask)
|
1320 |
+
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
1321 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1322 |
+
|
1323 |
+
- 1 indicates the head is **not masked**,
|
1324 |
+
- 0 indicates the head is **masked**.
|
1325 |
+
|
1326 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1327 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1328 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
1329 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
1330 |
+
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
1331 |
+
|
1332 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
1333 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1334 |
+
|
1335 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
1336 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
1337 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1338 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1339 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1340 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1341 |
+
than the model's internal embedding lookup matrix.
|
1342 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1343 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1344 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1345 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1346 |
+
use_cache (`bool`, *optional*):
|
1347 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1348 |
+
(see `past_key_values`).
|
1349 |
+
output_attentions (`bool`, *optional*):
|
1350 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1351 |
+
returned tensors for more detail.
|
1352 |
+
output_hidden_states (`bool`, *optional*):
|
1353 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1354 |
+
for more detail.
|
1355 |
+
return_dict (`bool`, *optional*):
|
1356 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1357 |
+
|
1358 |
+
Returns:
|
1359 |
+
|
1360 |
+
Example:
|
1361 |
+
|
1362 |
+
```python
|
1363 |
+
>>> from transformers import AutoTokenizer, OPTForCausalLM
|
1364 |
+
|
1365 |
+
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
|
1366 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
1367 |
+
|
1368 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1369 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1370 |
+
|
1371 |
+
>>> # Generate
|
1372 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1373 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1374 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
|
1375 |
+
```"""
|
1376 |
+
|
1377 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1378 |
+
output_hidden_states = (
|
1379 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1380 |
+
)
|
1381 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1382 |
+
|
1383 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1384 |
+
outputs = self.model.decoder(
|
1385 |
+
input_ids=input_ids,
|
1386 |
+
attention_mask=attention_mask,
|
1387 |
+
head_mask=head_mask,
|
1388 |
+
past_key_values=past_key_values,
|
1389 |
+
inputs_embeds=inputs_embeds,
|
1390 |
+
use_cache=use_cache,
|
1391 |
+
output_attentions=output_attentions,
|
1392 |
+
output_hidden_states=output_hidden_states,
|
1393 |
+
return_dict=return_dict,
|
1394 |
+
)
|
1395 |
+
|
1396 |
+
logits = self.lm_head(outputs[0]).contiguous()
|
1397 |
+
|
1398 |
+
loss = None
|
1399 |
+
if labels is not None:
|
1400 |
+
# move labels to correct device to enable model parallelism
|
1401 |
+
labels = labels.to(logits.device)
|
1402 |
+
# Shift so that tokens < n predict n
|
1403 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1404 |
+
shift_labels = labels[..., 1:].contiguous()
|
1405 |
+
# Flatten the tokens
|
1406 |
+
loss_fct = CrossEntropyLoss()
|
1407 |
+
loss = loss_fct(
|
1408 |
+
shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
1409 |
+
|
1410 |
+
if not return_dict:
|
1411 |
+
output = (logits,) + outputs[1:]
|
1412 |
+
return (loss,) + output if loss is not None else output
|
1413 |
+
|
1414 |
+
return CausalLMOutputWithPast(
|
1415 |
+
loss=loss,
|
1416 |
+
logits=logits,
|
1417 |
+
past_key_values=outputs.past_key_values,
|
1418 |
+
hidden_states=outputs.hidden_states,
|
1419 |
+
attentions=outputs.attentions,
|
1420 |
+
)
|
1421 |
+
|
1422 |
+
def prepare_inputs_for_generation(
|
1423 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1424 |
+
):
|
1425 |
+
if past_key_values is not None:
|
1426 |
+
past_length = past_key_values[0][0].shape[2]
|
1427 |
+
|
1428 |
+
# Some generation methods already pass only the last input ID
|
1429 |
+
if input_ids.shape[1] > past_length:
|
1430 |
+
remove_prefix_length = past_length
|
1431 |
+
else:
|
1432 |
+
# Default to old behavior: keep only final ID
|
1433 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1434 |
+
|
1435 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1436 |
+
|
1437 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1438 |
+
if inputs_embeds is not None and past_key_values is None:
|
1439 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1440 |
+
else:
|
1441 |
+
model_inputs = {"input_ids": input_ids}
|
1442 |
+
|
1443 |
+
model_inputs.update(
|
1444 |
+
{
|
1445 |
+
"past_key_values": past_key_values,
|
1446 |
+
"use_cache": kwargs.get("use_cache"),
|
1447 |
+
"attention_mask": attention_mask,
|
1448 |
+
}
|
1449 |
+
)
|
1450 |
+
return model_inputs
|
1451 |
+
|
1452 |
+
@staticmethod
|
1453 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1454 |
+
reordered_past = ()
|
1455 |
+
for layer_past in past_key_values:
|
1456 |
+
reordered_past += (
|
1457 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device))
|
1458 |
+
for past_state in layer_past),
|
1459 |
+
)
|
1460 |
+
return reordered_past
|
1461 |
+
|
1462 |
+
|
1463 |
+
@add_start_docstrings(
|
1464 |
+
"""
|
1465 |
+
The OPT Model transformer with a sequence classification head on top (linear layer).
|
1466 |
+
|
1467 |
+
[`OPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1468 |
+
(e.g. GPT-2) do.
|
1469 |
+
|
1470 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1471 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1472 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1473 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1474 |
+
each row of the batch).
|
1475 |
+
""",
|
1476 |
+
OPT_START_DOCSTRING,
|
1477 |
+
)
|
1478 |
+
class OPTForSequenceClassification(OPTPreTrainedModel):
|
1479 |
+
def __init__(self, config: OPTConfig):
|
1480 |
+
super().__init__(config)
|
1481 |
+
self.num_labels = config.num_labels
|
1482 |
+
self.model = OPTModel(config)
|
1483 |
+
self.score = nn.Linear(config.word_embed_proj_dim,
|
1484 |
+
self.num_labels, bias=False)
|
1485 |
+
|
1486 |
+
# Initialize weights and apply final processing
|
1487 |
+
self.post_init()
|
1488 |
+
|
1489 |
+
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
|
1490 |
+
@add_code_sample_docstrings(
|
1491 |
+
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
1492 |
+
output_type=SequenceClassifierOutputWithPast,
|
1493 |
+
config_class=_CONFIG_FOR_DOC,
|
1494 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
1495 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
1496 |
+
)
|
1497 |
+
def forward(
|
1498 |
+
self,
|
1499 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1500 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1501 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1502 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1503 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1504 |
+
labels: Optional[torch.LongTensor] = None,
|
1505 |
+
use_cache: Optional[bool] = None,
|
1506 |
+
output_attentions: Optional[bool] = None,
|
1507 |
+
output_hidden_states: Optional[bool] = None,
|
1508 |
+
return_dict: Optional[bool] = None,
|
1509 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1510 |
+
r"""
|
1511 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1512 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1513 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1514 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1515 |
+
"""
|
1516 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1517 |
+
|
1518 |
+
transformer_outputs = self.model(
|
1519 |
+
input_ids,
|
1520 |
+
past_key_values=past_key_values,
|
1521 |
+
attention_mask=attention_mask,
|
1522 |
+
head_mask=head_mask,
|
1523 |
+
inputs_embeds=inputs_embeds,
|
1524 |
+
use_cache=use_cache,
|
1525 |
+
output_attentions=output_attentions,
|
1526 |
+
output_hidden_states=output_hidden_states,
|
1527 |
+
return_dict=return_dict,
|
1528 |
+
)
|
1529 |
+
hidden_states = transformer_outputs[0]
|
1530 |
+
logits = self.score(hidden_states)
|
1531 |
+
|
1532 |
+
if input_ids is not None:
|
1533 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1534 |
+
else:
|
1535 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1536 |
+
|
1537 |
+
if self.config.pad_token_id is None:
|
1538 |
+
sequence_lengths = -1
|
1539 |
+
else:
|
1540 |
+
if input_ids is not None:
|
1541 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1542 |
+
sequence_lengths = torch.eq(
|
1543 |
+
input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1544 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1545 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1546 |
+
else:
|
1547 |
+
sequence_lengths = -1
|
1548 |
+
logger.warning(
|
1549 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1550 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1551 |
+
)
|
1552 |
+
|
1553 |
+
pooled_logits = logits[torch.arange(
|
1554 |
+
batch_size, device=logits.device), sequence_lengths]
|
1555 |
+
|
1556 |
+
loss = None
|
1557 |
+
if labels is not None:
|
1558 |
+
if self.config.problem_type is None:
|
1559 |
+
if self.num_labels == 1:
|
1560 |
+
self.config.problem_type = "regression"
|
1561 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1562 |
+
self.config.problem_type = "single_label_classification"
|
1563 |
+
else:
|
1564 |
+
self.config.problem_type = "multi_label_classification"
|
1565 |
+
|
1566 |
+
if self.config.problem_type == "regression":
|
1567 |
+
loss_fct = MSELoss()
|
1568 |
+
if self.num_labels == 1:
|
1569 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1570 |
+
else:
|
1571 |
+
loss = loss_fct(pooled_logits, labels)
|
1572 |
+
elif self.config.problem_type == "single_label_classification":
|
1573 |
+
loss_fct = CrossEntropyLoss()
|
1574 |
+
loss = loss_fct(
|
1575 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1576 |
+
elif self.config.problem_type == "multi_label_classification":
|
1577 |
+
loss_fct = BCEWithLogitsLoss()
|
1578 |
+
loss = loss_fct(pooled_logits, labels)
|
1579 |
+
if not return_dict:
|
1580 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1581 |
+
return ((loss,) + output) if loss is not None else output
|
1582 |
+
|
1583 |
+
return SequenceClassifierOutputWithPast(
|
1584 |
+
loss=loss,
|
1585 |
+
logits=pooled_logits,
|
1586 |
+
past_key_values=transformer_outputs.past_key_values,
|
1587 |
+
hidden_states=transformer_outputs.hidden_states,
|
1588 |
+
attentions=transformer_outputs.attentions,
|
1589 |
+
)
|
1590 |
+
|
1591 |
+
def get_input_embeddings(self):
|
1592 |
+
return self.model.decoder.embed_tokens
|
1593 |
+
|
1594 |
+
def set_input_embeddings(self, value):
|
1595 |
+
self.model.decoder.embed_tokens = value
|
1596 |
+
|
1597 |
+
|
1598 |
+
@add_start_docstrings(
|
1599 |
+
"""
|
1600 |
+
The OPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD
|
1601 |
+
(a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1602 |
+
""",
|
1603 |
+
OPT_START_DOCSTRING,
|
1604 |
+
)
|
1605 |
+
class OPTForQuestionAnswering(OPTPreTrainedModel):
|
1606 |
+
def __init__(self, config: OPTConfig):
|
1607 |
+
super().__init__(config)
|
1608 |
+
self.model = OPTModel(config)
|
1609 |
+
self.qa_outputs = nn.Linear(config.word_embed_proj_dim, 2)
|
1610 |
+
|
1611 |
+
# Initialize weights and apply final processing
|
1612 |
+
self.post_init()
|
1613 |
+
|
1614 |
+
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
|
1615 |
+
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
|
1616 |
+
def forward(
|
1617 |
+
self,
|
1618 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1619 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1620 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1621 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1622 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1623 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1624 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1625 |
+
use_cache: Optional[bool] = None,
|
1626 |
+
output_attentions: Optional[bool] = None,
|
1627 |
+
output_hidden_states: Optional[bool] = None,
|
1628 |
+
return_dict: Optional[bool] = None,
|
1629 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1630 |
+
r"""
|
1631 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1632 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1633 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1634 |
+
are not taken into account for computing the loss.
|
1635 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1636 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1637 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1638 |
+
are not taken into account for computing the loss.
|
1639 |
+
|
1640 |
+
Returns:
|
1641 |
+
|
1642 |
+
Example:
|
1643 |
+
|
1644 |
+
```python
|
1645 |
+
>>> from transformers import AutoTokenizer, OPTForQuestionAnswering
|
1646 |
+
>>> import torch
|
1647 |
+
|
1648 |
+
>>> torch.manual_seed(4) # doctest: +IGNORE_RESULT
|
1649 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
1650 |
+
|
1651 |
+
>>> # note: we are loading a OPTForQuestionAnswering from the hub here,
|
1652 |
+
>>> # so the head will be randomly initialized, hence the predictions will be random
|
1653 |
+
>>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m")
|
1654 |
+
|
1655 |
+
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
1656 |
+
|
1657 |
+
>>> inputs = tokenizer(question, text, return_tensors="pt")
|
1658 |
+
>>> with torch.no_grad():
|
1659 |
+
... outputs = model(**inputs)
|
1660 |
+
|
1661 |
+
>>> answer_start_index = outputs.start_logits.argmax()
|
1662 |
+
>>> answer_end_index = outputs.end_logits.argmax()
|
1663 |
+
|
1664 |
+
>>> answer_offset = len(tokenizer(question)[0])
|
1665 |
+
|
1666 |
+
>>> predict_answer_tokens = inputs.input_ids[
|
1667 |
+
... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1
|
1668 |
+
... ]
|
1669 |
+
>>> predicted = tokenizer.decode(predict_answer_tokens)
|
1670 |
+
>>> predicted
|
1671 |
+
' a nice puppet'
|
1672 |
+
```"""
|
1673 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1674 |
+
|
1675 |
+
transformer_outputs = self.model(
|
1676 |
+
input_ids,
|
1677 |
+
past_key_values=past_key_values,
|
1678 |
+
attention_mask=attention_mask,
|
1679 |
+
head_mask=head_mask,
|
1680 |
+
inputs_embeds=inputs_embeds,
|
1681 |
+
use_cache=use_cache,
|
1682 |
+
output_attentions=output_attentions,
|
1683 |
+
output_hidden_states=output_hidden_states,
|
1684 |
+
return_dict=return_dict,
|
1685 |
+
)
|
1686 |
+
hidden_states = transformer_outputs[0]
|
1687 |
+
|
1688 |
+
logits = self.qa_outputs(hidden_states)
|
1689 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1690 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1691 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1692 |
+
|
1693 |
+
total_loss = None
|
1694 |
+
if start_positions is not None and end_positions is not None:
|
1695 |
+
# If we are on multi-GPU, split add a dimension
|
1696 |
+
if len(start_positions.size()) > 1:
|
1697 |
+
start_positions = start_positions.squeeze(-1)
|
1698 |
+
if len(end_positions.size()) > 1:
|
1699 |
+
end_positions = end_positions.squeeze(-1)
|
1700 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1701 |
+
ignored_index = start_logits.size(1)
|
1702 |
+
start_positions = start_positions.clamp(
|
1703 |
+
0, ignored_index).to(logits.device)
|
1704 |
+
end_positions = end_positions.clamp(
|
1705 |
+
0, ignored_index).to(logits.device)
|
1706 |
+
|
1707 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1708 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1709 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1710 |
+
total_loss = (start_loss + end_loss) / 2
|
1711 |
+
|
1712 |
+
if not return_dict:
|
1713 |
+
output = (start_logits, end_logits) + transformer_outputs[2:]
|
1714 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1715 |
+
|
1716 |
+
return QuestionAnsweringModelOutput(
|
1717 |
+
loss=total_loss,
|
1718 |
+
start_logits=start_logits,
|
1719 |
+
end_logits=end_logits,
|
1720 |
+
hidden_states=transformer_outputs.hidden_states,
|
1721 |
+
attentions=transformer_outputs.attentions,
|
1722 |
+
)
|
1723 |
+
|
1724 |
+
def get_input_embeddings(self):
|
1725 |
+
return self.model.decoder.embed_tokens
|
1726 |
+
|
1727 |
+
def set_input_embeddings(self, value):
|
1728 |
+
self.model.decoder.embed_tokens = value
|