robinzixuan
commited on
Commit
•
15902cc
1
Parent(s):
fada12b
Upload modeling_opt.py
Browse files- modeling_opt.py +7 -14
modeling_opt.py
CHANGED
@@ -200,8 +200,7 @@ class OPTAttention(nn.Module):
|
|
200 |
|
201 |
if (self.head_dim * self.num_heads) != self.embed_dim:
|
202 |
raise ValueError(
|
203 |
-
f"embed_dim must be divisible by num_heads (got `embed_dim`: {
|
204 |
-
self.embed_dim}"
|
205 |
f" and `num_heads`: {self.num_heads})."
|
206 |
)
|
207 |
self.scaling = self.head_dim**-0.5
|
@@ -371,16 +370,14 @@ class OPTAttention(nn.Module):
|
|
371 |
|
372 |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
373 |
raise ValueError(
|
374 |
-
f"Attention weights should be of size {
|
375 |
-
(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
376 |
f" {attn_weights.size()}"
|
377 |
)
|
378 |
|
379 |
if attention_mask is not None:
|
380 |
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
381 |
raise ValueError(
|
382 |
-
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {
|
383 |
-
attention_mask.size()}"
|
384 |
)
|
385 |
attn_weights = attn_weights.view(
|
386 |
bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
@@ -401,8 +398,7 @@ class OPTAttention(nn.Module):
|
|
401 |
if layer_head_mask is not None:
|
402 |
if layer_head_mask.size() != (self.num_heads,):
|
403 |
raise ValueError(
|
404 |
-
f"Head mask for a single layer should be of size {
|
405 |
-
(self.num_heads,)}, but is"
|
406 |
f" {layer_head_mask.size()}"
|
407 |
)
|
408 |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
|
@@ -436,8 +432,7 @@ class OPTAttention(nn.Module):
|
|
436 |
|
437 |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
438 |
raise ValueError(
|
439 |
-
f"`attn_output` should be of size {
|
440 |
-
(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
441 |
f" {attn_output.size()}"
|
442 |
)
|
443 |
|
@@ -1095,8 +1090,7 @@ class OPTDecoder(OPTPreTrainedModel):
|
|
1095 |
batch_size, mask_seq_length, device=inputs_embeds.device)
|
1096 |
elif attention_mask.shape[1] != mask_seq_length:
|
1097 |
raise ValueError(
|
1098 |
-
f"The provided attention mask has length {
|
1099 |
-
attention_mask.shape[1]}, but its length should be "
|
1100 |
f"{mask_seq_length} (sum of the lengths of current and past inputs)"
|
1101 |
)
|
1102 |
causal_attention_mask = _prepare_4d_causal_attention_mask(
|
@@ -1128,8 +1122,7 @@ class OPTDecoder(OPTPreTrainedModel):
|
|
1128 |
if attn_mask is not None:
|
1129 |
if attn_mask.size()[0] != (len(self.layers)):
|
1130 |
raise ValueError(
|
1131 |
-
f"The `{mask_name}` should be specified for {
|
1132 |
-
len(self.layers)} layers, but it is for"
|
1133 |
f" {head_mask.size()[0]}."
|
1134 |
)
|
1135 |
|
|
|
200 |
|
201 |
if (self.head_dim * self.num_heads) != self.embed_dim:
|
202 |
raise ValueError(
|
203 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
|
|
204 |
f" and `num_heads`: {self.num_heads})."
|
205 |
)
|
206 |
self.scaling = self.head_dim**-0.5
|
|
|
370 |
|
371 |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
372 |
raise ValueError(
|
373 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
|
|
374 |
f" {attn_weights.size()}"
|
375 |
)
|
376 |
|
377 |
if attention_mask is not None:
|
378 |
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
379 |
raise ValueError(
|
380 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
|
|
381 |
)
|
382 |
attn_weights = attn_weights.view(
|
383 |
bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
|
|
398 |
if layer_head_mask is not None:
|
399 |
if layer_head_mask.size() != (self.num_heads,):
|
400 |
raise ValueError(
|
401 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
|
|
402 |
f" {layer_head_mask.size()}"
|
403 |
)
|
404 |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
|
|
|
432 |
|
433 |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
434 |
raise ValueError(
|
435 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
|
|
436 |
f" {attn_output.size()}"
|
437 |
)
|
438 |
|
|
|
1090 |
batch_size, mask_seq_length, device=inputs_embeds.device)
|
1091 |
elif attention_mask.shape[1] != mask_seq_length:
|
1092 |
raise ValueError(
|
1093 |
+
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
|
|
|
1094 |
f"{mask_seq_length} (sum of the lengths of current and past inputs)"
|
1095 |
)
|
1096 |
causal_attention_mask = _prepare_4d_causal_attention_mask(
|
|
|
1122 |
if attn_mask is not None:
|
1123 |
if attn_mask.size()[0] != (len(self.layers)):
|
1124 |
raise ValueError(
|
1125 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
|
|
1126 |
f" {head_mask.size()[0]}."
|
1127 |
)
|
1128 |
|