magichampz commited on
Commit
3858d9a
·
1 Parent(s): 77f6352

Upload 6 files

Browse files

added scripts for creating the model and loading it onto the raspberry pi

create-model/computer_requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ tensorflow == 2.9.1
2
+ Pillow == 9.2.0
3
+ numpy == 1.23.2
4
+ opencv-python == 4.6.0.66
5
+ matplotlib == 3.5.3
6
+ scikit-learn == 1.1.2
create-model/create_image_classification_model.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
create-model/create_training_data_array.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # script to create training data npy file from the database of images
2
+ # the npy file can then be uploaded to google drive and read in the jupyter notebook
3
+ # can then create training_data for model training
4
+
5
+ import os
6
+ import cv2
7
+ import numpy as np
8
+
9
+ # initialize target image size for the training and testing data
10
+ img_height = 128
11
+ img_width = 128
12
+
13
+ categories = ["straight-liftarm", 'pins', 'bent-liftarm', 'gears-and-disc', 'special-connector', 'axles', 'axle-connectors-stoppers']
14
+
15
+ training_data = []
16
+ def get_category_images(list,path,label):
17
+ #print("old:", str(len(training_data)))
18
+ current = len(training_data)
19
+ for i in range(len(list)):
20
+ try:
21
+ image = cv2.imread(os.path.join(path,list[i]),
22
+ cv2.IMREAD_GRAYSCALE)
23
+ image = cv2.resize(image, (128,128))
24
+ training_data.append([image, label])
25
+ except Exception:
26
+ pass
27
+ new = len(training_data)
28
+ print(new - current)
29
+
30
+
31
+ for cat in categories:
32
+ cat_path = "RPI3_project/lego-test-data/database/" + cat
33
+ cat_list = os.listdir(cat_path)
34
+ cat_label = categories.index(cat)
35
+ get_category_images(cat_list, cat_path, cat_label)
36
+
37
+ print(len(training_data))
38
+ td_array = np.array(training_data)
39
+ len(td_array)
40
+ np.save('td_array_7cat', td_array)
create-model/testing-tflite-model-com.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # to test tflite model on individual images
2
+ # run on your own computer as raspberry pi can't install tensorflow, and we need the img_to_array function
3
+
4
+ import numpy as np
5
+ import tensorflow as tf
6
+ from tensorflow.keras.preprocessing.image import load_img
7
+ from tensorflow.keras.preprocessing.image import img_to_array
8
+ from PIL import Image, ImageOps
9
+
10
+
11
+ # Load TFLite model and allocate tensors.
12
+ interpreter = tf.lite.Interpreter(model_path="OGmodel.tflite")
13
+ interpreter.allocate_tensors()
14
+
15
+ # Get input and output tensors.
16
+ input_details = interpreter.get_input_details()
17
+ output_details = interpreter.get_output_details()
18
+
19
+ # Test model on random input data.
20
+ input_shape = input_details[0]['shape']
21
+ input_image = Image.open('lego-testing/testing/12image.jpg')
22
+ input_image = ImageOps.grayscale(input_image)
23
+ input_image = input_image.resize((28,28))
24
+
25
+ input_data = img_to_array(input_image)
26
+ input_data.resize(1,28,28,1)
27
+ #input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
28
+ interpreter.set_tensor(input_details[0]['index'], input_data)
29
+
30
+ interpreter.invoke()
31
+
32
+ # The function `get_tensor()` returns a copy of the tensor data.
33
+ # Use `tensor()` in order to get a pointer to the tensor.
34
+ output_data = interpreter.get_tensor(output_details[0]['index'])
35
+ print(np.argmax(output_data[0]))
rpi-object-detection/motion_detection_and_image_classification.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This program combines motion detection and object classification. It will ouput the most probable category of lego pieces
2
+ # after the picamera detects it in realtime.
3
+ # The motion detection portion of the script was adapted from pyimagesearch's project
4
+ # 'Building a Raspberry Pi security camera with OpenCV' and can be found at
5
+ # https://pyimagesearch.com/2019/03/25/building-a-raspberry-pi-security-camera-with-opencv/
6
+
7
+ # To run, open the terminal in RPI and navigate to folder containing the python script.
8
+ # Run python3 'path_to_script' --conf conf.json
9
+
10
+ # This script, when run, will activate the picamera to detect motion of objects (preferably against a white background)
11
+ # and enclose it in a green boundary box.
12
+ # If successive frames of motion is detected by the picamera, the boundary box will be extracted and image saved to a
13
+ # pre-specified folder in the RPI. The image contrast will be increased, and resized before being converted into an input tensor.
14
+ # The input tensor will be passed into the interpretor (a tensorflow lite model) which will output a probability vector.
15
+ # The vector index of the highest probability will be extracted to output the most likely class of the lego piece.
16
+
17
+ # This script can be modified to take the images required for the database. The motionCounter can be decreased to take more images.
18
+
19
+ from picamera.array import PiRGBArray
20
+ from picamera import PiCamera
21
+ import argparse
22
+ import warnings
23
+ import datetime
24
+ import imutils
25
+ import json
26
+ import time
27
+ import cv2
28
+ import os
29
+
30
+ #imports and initialisations for image recognition
31
+ from tflite_runtime.interpreter import Interpreter
32
+ from PIL import Image, ImageOps
33
+ import numpy as np
34
+
35
+ # Load TFLite model and allocate tensors.
36
+ interpreter = Interpreter(model_path="lego_tflite_model/detect.tflite") # insert path to the tflite model
37
+ interpreter.allocate_tensors()
38
+ path = r'/home/nullspacepi/Desktop/opencv-test/lego-pieces' # create variable for path to where camera pictures will be saved to
39
+
40
+ # Get input and output tensors.
41
+ input_details = interpreter.get_input_details()
42
+ output_details = interpreter.get_output_details()
43
+ input_shape = input_details[0]['shape']
44
+
45
+ # define a function that will convert the image captured into an array
46
+ def img_to_array(img, data_format='channels_last', dtype='float32'):
47
+ if data_format not in {'channels_first', 'channels_last'}:
48
+ raise ValueError('Unknown data_format: %s' % data_format)
49
+
50
+ x = np.asarray(img, dtype=dtype)
51
+ if len(x.shape) == 3:
52
+ if data_format == 'channels_first':
53
+ x = x.transpose(2, 0, 1)
54
+ elif len(x.shape) == 2:
55
+ if data_format == 'channels_first':
56
+ x = x.reshape((1, x.shape[0], x.shape[1]))
57
+ else:
58
+ x = x.reshape((x.shape[0], x.shape[1], 1))
59
+ else:
60
+ raise ValueError('Unsupported image shape: %s' % (x.shape,))
61
+ return x
62
+
63
+ # define a function that will increase the contrast of the image by manipulating its array. This will increase the likelihood
64
+ # of its features to be detected by the image classification tensorflow model
65
+ def increase_contrast_more(s):
66
+ minval = np.percentile(s, 2)
67
+ maxval = np.percentile(s, 98)
68
+ npImage = np.clip(s, minval, maxval)
69
+
70
+ npImage = npImage.astype(int)
71
+
72
+ min=np.min(npImage) # result=144
73
+ max=np.max(npImage) # result=216
74
+
75
+ # Make a LUT (Look-Up Table) to translate image values
76
+ LUT=np.zeros(256,dtype=np.float32)
77
+ LUT[min:max+1]=np.linspace(start=0,stop=255,num=(max-min)+1,endpoint=True,dtype=np.float32)
78
+ s_clipped = LUT[npImage]
79
+ return s_clipped
80
+
81
+ # Read the labels from the text file as a Python list.
82
+ def load_labels(path):
83
+ with open(path, 'r') as f:
84
+ return [line.strip() for i, line in enumerate(f.readlines())]
85
+
86
+ # Read class labels and create a vector.
87
+ labels = load_labels("lego_tflite_model/labelmap.txt")
88
+
89
+ # construct the argument parser and parse the arguments
90
+ ap = argparse.ArgumentParser()
91
+ ap.add_argument("-c", "--conf", required=True, help="path to the JSON configuration file")
92
+ args = vars(ap.parse_args())
93
+
94
+ # filter warnings, load the configuration
95
+ warnings.filterwarnings("ignore")
96
+ conf = json.load(open(args["conf"]))
97
+ client = None
98
+
99
+ # initialize the camera and grab a reference to the raw camera capture
100
+ camera = PiCamera()
101
+ camera.resolution = tuple(conf["resolution"])
102
+ camera.framerate = conf["fps"]
103
+ rawCapture = PiRGBArray(camera, size=tuple(conf["resolution"]))
104
+
105
+ # allow the camera to warmup, then initialize the average frame, last
106
+ # uploaded timestamp, and frame motion counter
107
+ print("[INFO] warming up...")
108
+ time.sleep(conf["camera_warmup_time"])
109
+ avg = None
110
+ motionCounter = 0
111
+ image_number = 0
112
+
113
+ # capture frames from the camera
114
+ for f in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
115
+ # grab the raw NumPy array representing the image and initialize
116
+ # the timestamp and occupied/unoccupied text
117
+ frame = f.array
118
+ text = "No piece"
119
+
120
+ # resize the frame, convert it to grayscale, and blur it
121
+ frame = imutils.resize(frame, width=500)
122
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
123
+ gray = cv2.GaussianBlur(gray, (21, 21), 0)
124
+
125
+ # if the average frame is None, initialize it
126
+ if avg is None:
127
+ print("[INFO] starting background model...")
128
+ avg = gray.copy().astype("float")
129
+ rawCapture.truncate(0)
130
+ continue
131
+
132
+
133
+ # accumulate the weighted average between the current frame and
134
+ # previous frames, then compute the difference between the current
135
+ # frame and running average
136
+ cv2.accumulateWeighted(gray, avg, 0.5)
137
+ frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg))
138
+
139
+ # threshold the delta image, dilate the thresholded image to fill
140
+ # in holes, then find contours on thresholded image
141
+ thresh = cv2.threshold(frameDelta, conf["delta_thresh"], 255,
142
+ cv2.THRESH_BINARY)[1]
143
+ thresh = cv2.dilate(thresh, None, iterations=2)
144
+ cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
145
+ cv2.CHAIN_APPROX_SIMPLE)
146
+ cnts = imutils.grab_contours(cnts)
147
+
148
+ # loop over the contours
149
+
150
+ for c in cnts:
151
+ # if the contour is too small, ignore it
152
+ if cv2.contourArea(c) < conf["min_area"]:
153
+ continue
154
+
155
+ # compute the bounding box for the contour, draw it on the frame,
156
+ # and update the text
157
+ (x, y, w, h) = cv2.boundingRect(c)
158
+ cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
159
+ piece_image = frame[y:y+h,x:x+w]
160
+ text = "Piece found"
161
+ # cv2.imshow("Image", image)
162
+
163
+
164
+ if text == "Piece found":
165
+ # to save images of bounding boxes
166
+
167
+
168
+ motionCounter += 1
169
+ print("motionCounter= ", motionCounter)
170
+ print("image_number= ", image_number)
171
+
172
+ # # Save image if motion is detected for 8 or more successive frames
173
+ if motionCounter >= 8:
174
+ image_number +=1
175
+ image_name = str(image_number)+"image.jpg"
176
+ cv2.imwrite(os.path.join(path, image_name), piece_image)
177
+ motionCounter = 0 #reset the motion counter
178
+
179
+ # Open the image, resize it and increase its contrast
180
+ input_image = Image.open('lego-pieces/'+ image_name)
181
+ input_image = ImageOps.grayscale(input_image)
182
+ input_image = input_image.resize((128,128))
183
+ input_data = img_to_array(input_image)
184
+ input_data = increase_contrast_more(input_data)
185
+ input_data.resize(1,128,128,1)
186
+
187
+ # Pass the np.array of the image through the tflite model. This will output a probablity vector
188
+ interpreter.set_tensor(input_details[0]['index'], input_data)
189
+ interpreter.invoke()
190
+ output_data = interpreter.get_tensor(output_details[0]['index'])
191
+
192
+ # Get the index of the highest value in the probability vector.
193
+ # This index value will correspond to the labels vector created above (i.e index value 1 will mean the object is most likely labels[1])
194
+ category_number = np.argmax(output_data[0])
195
+
196
+
197
+ # Return the classification label of the image
198
+ classification_label = labels[category_number]
199
+ print("Image Label for " + image_name + " is :", classification_label)
200
+
201
+
202
+
203
+ else:
204
+ motionCounter = 0
205
+
206
+
207
+
208
+ # check to see if the frames should be displayed to screen
209
+ if conf["show_video"]:
210
+ # display the feed
211
+ cv2.imshow("Feed", frame)
212
+ key = cv2.waitKey(1) & 0xFF
213
+ # if the `q` key is pressed, break from the lop
214
+ if key == ord("q"):
215
+ break
216
+ # clear the stream in preparation for the next frame
217
+ rawCapture.truncate(0)
rpi-object-detection/rpi_requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ opencv-contrib-python==4.5.3.56
2
+ picamera== 1.13
3
+ tflite-runtime == 2.9.1
4
+ Pillow >= 9.0.1
5
+ numpy == 1.23.2