File size: 6,194 Bytes
8e3eaad
 
 
f3f6964
8e3eaad
cddfb98
 
f3f6964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e3eaad
 
cddfb98
8e3eaad
 
 
 
 
 
6dbbb82
8e3eaad
6dbbb82
 
 
8e3eaad
6592522
 
00350e2
6592522
 
 
8e3eaad
 
6b9c66b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bd00f
6b9c66b
 
 
 
 
 
 
 
 
8e3eaad
bc2bd4e
 
6dbbb82
bc2bd4e
 
 
 
8e3eaad
 
07de8a5
8e3eaad
 
 
 
 
 
 
 
 
 
 
 
afddcfa
f3f6964
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- code
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: Orca-SOLAR-4x10.7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.52
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.78
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 67.03
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 64.54
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.9
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 68.23
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
      name: Open LLM Leaderboard
---

# πŸŒžπŸš€ Orca-SOLAR-4x10.7_36B 

Merge of four Solar-10.7B instruct finetunes.

![solar](solar.png)

## 🌟 Usage 
This SOLAR model _loves_ to code. In my experience, if you ask it a code question it will use almost all of the available token limit to complete the code.

However, this can also be to its own detriment. If the request is complex it may not finish the code in a given time period. This behavior is not because of an eos token, as it finishes sentences quite normally if its a non code question.

Your mileage may vary.

## 🌎 HF Spaces

This 36B parameter model is capabale of running on free tier hardware (CPU only - GGUF)

+ Try the model [here](https://huggingface.co./spaces/macadeliccc/Orca-SOLAR-4x10.7b-chat-GGUF)
  
## πŸŒ… Code Example

Example also available in [colab](https://colab.research.google.com/drive/10FWCLODU_EFclVOFOlxNYMmSiLilGMBZ?usp=sharing)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.

    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt")
    
    # Generate output tokens
    outputs = model.generate(**inputs, max_new_tokens=512, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    # Decode the generated tokens to a string
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response


# Load the model and tokenizer
model_id = "macadeliccc/Orca-SOLAR-4x10.7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."


print("Response:")
print(generate_response(prompt), "\n")
```

## Llama.cpp

GGUF Quants available [here](https://huggingface.co./macadeliccc/Orca-SOLAR-4x10.7b-GGUF)

![llama.cpp-screenshot](orca-llama-cpp-1.png)


## Evaluations 

https://huggingface.co./datasets/open-llm-leaderboard/details_macadeliccc__Orca-SOLAR-4x10.7b


### πŸ“š Citations 

```bibtex
@misc{kim2023solar,
      title={SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling}, 
      author={Dahyun Kim and Chanjun Park and Sanghoon Kim and Wonsung Lee and Wonho Song and Yunsu Kim and Hyeonwoo Kim and Yungi Kim and Hyeonju Lee and Jihoo Kim and Changbae Ahn and Seonghoon Yang and Sukyung Lee and Hyunbyung Park and Gyoungjin Gim and Mikyoung Cha and Hwalsuk Lee and Sunghun Kim},
      year={2023},
      eprint={2312.15166},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_macadeliccc__Orca-SOLAR-4x10.7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.17|
|AI2 Reasoning Challenge (25-Shot)|68.52|
|HellaSwag (10-Shot)              |86.78|
|MMLU (5-Shot)                    |67.03|
|TruthfulQA (0-shot)              |64.54|
|Winogrande (5-shot)              |83.90|
|GSM8k (5-shot)                   |68.23|