File size: 1,348 Bytes
6ca97dd
 
 
 
 
 
d285eb8
 
6ca97dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af8c406
6ca97dd
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
---

![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/wZ0eCzTn2CzYB44cmaE6L.webp)

This model was requested for further testing. Original [thread](https://huggingface.co./macadeliccc/Laser-WestLake-2x7b/discussions/1)

## Code example

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.

    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt")

    # Generate output tokens
    outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    # Decode the generated tokens to a string
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

# Load the model and tokenizer
model_id = "macadeliccc/KunoichiLake-2x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

prompt = "Write a quicksort algorithm in python"

# Generate and print responses for each language
print("Response:")
print(generate_response(prompt), "\n")
```