--- language: fa datasets: - shemo tags: - audio - speech - speech-emotion-recognition license: apache-2.0 --- # Emotion Recognition in Persian (fa) Speech using HuBERT ## How to use ### Requirements ```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa ``` ```bash !git clone https://github.com/m3hrdadfi/soxan.git . ``` ### Prediction ```python import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification import librosa import IPython.display as ipd import numpy as np import pandas as pd ``` ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "m3hrdadfi/hubert-base-persian-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device) ``` ```python def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ``` ```python path = "/path/to/sadness.wav" outputs = predict(path, sampling_rate) ``` ```bash [ {'Label': 'Anger', 'Score': '0.0%'}, {'Label': 'Fear', 'Score': '0.0%'}, {'Label': 'Happiness', 'Score': '0.0%'}, {'Label': 'Neutral', 'Score': '0.0%'}, {'Label': 'Sadness', 'Score': '99.9%'}, {'Label': 'Surprise', 'Score': '0.0%'} ] ``` ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | Emotions | precision | recall | f1-score | accuracy | |:---------:|:---------:|:------:|:--------:|:--------:| | Anger | 0.96 | 0.96 | 0.96 | | | Fear | 1.00 | 0.50 | 0.67 | | | Happiness | 0.79 | 0.87 | 0.83 | | | Neutral | 0.93 | 0.94 | 0.93 | | | Sadness | 0.87 | 0.94 | 0.91 | | | Surprise | 0.97 | 0.75 | 0.85 | | | | | | Overal | 0.92 | ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/soxan/issues).