lxyuan commited on
Commit
5e21c98
·
1 Parent(s): 247163f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -10
README.md CHANGED
@@ -1,9 +1,49 @@
1
  ---
2
  tags:
3
  - generated_from_trainer
 
 
 
4
  model-index:
5
  - name: span-marker-bert-base-multilingual-cased-multinerd
6
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
 
9
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -11,28 +51,76 @@ should probably proofread and complete it, then remove this comment. -->
11
 
12
  # span-marker-bert-base-multilingual-cased-multinerd
13
 
14
- This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
15
- It achieves the following results on the evaluation set:
16
  - Loss: 0.0049
17
  - Overall Precision: 0.9242
18
  - Overall Recall: 0.9281
19
  - Overall F1: 0.9261
20
  - Overall Accuracy: 0.9852
21
 
22
- ## Model description
23
 
24
- More information needed
 
 
 
25
 
26
- ## Intended uses & limitations
27
 
28
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- ## Training and evaluation data
31
 
32
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Training procedure
35
 
 
 
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
@@ -61,4 +149,4 @@ The following hyperparameters were used during training:
61
  - Transformers 4.30.2
62
  - Pytorch 2.0.1+cu117
63
  - Datasets 2.14.3
64
- - Tokenizers 0.13.3
 
1
  ---
2
  tags:
3
  - generated_from_trainer
4
+ - ner
5
+ - named-entity-recognition
6
+ - span-marker
7
  model-index:
8
  - name: span-marker-bert-base-multilingual-cased-multinerd
9
+ results:
10
+ - task:
11
+ type: token-classification
12
+ name: Named Entity Recognition
13
+ dataset:
14
+ type: Babelscape/multinerd
15
+ name: MultiNERD
16
+ split: test
17
+ revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25
18
+ metrics:
19
+ - type: f1
20
+ value: 0.9261
21
+ name: F1
22
+ - type: precision
23
+ value: 0.9242
24
+ name: Precision
25
+ - type: recall
26
+ value: 0.9281
27
+ name: Recal
28
+ license: apache-2.0
29
+ datasets:
30
+ - Babelscape/multinerd
31
+ metrics:
32
+ - precision
33
+ - recall
34
+ - f1
35
+ pipeline_tag: token-classification
36
+ language:
37
+ - de
38
+ - en
39
+ - es
40
+ - fr
41
+ - it
42
+ - nl
43
+ - pl
44
+ - pt
45
+ - ru
46
+ - zh
47
  ---
48
 
49
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
51
 
52
  # span-marker-bert-base-multilingual-cased-multinerd
53
 
54
+ This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an [Babelscape/multinerd](https://huggingface.co/datasets/Babelscape/multinerd) dataset.
55
+ It achieves the following results on the test set:
56
  - Loss: 0.0049
57
  - Overall Precision: 0.9242
58
  - Overall Recall: 0.9281
59
  - Overall F1: 0.9261
60
  - Overall Accuracy: 0.9852
61
 
 
62
 
63
+ This is a replication of Tom's work. Everything remains unchanged,
64
+ except that we extended the number of training epochs to 3 for a
65
+ slightly longer training duration and set the gradient_accumulation_steps to 2.
66
+ Please refer to the official [model page](https://huggingface.co/tomaarsen/span-marker-mbert-base-multinerd) to review their results and training script
67
 
68
+ ## Label set
69
 
70
+ | Class | Description | Examples |
71
+ |-------|-------------|----------|
72
+ | **PER (person)** | People | Ray Charles, Jessica Alba, Leonardo DiCaprio, Roger Federer, Anna Massey. |
73
+ | **ORG (organization)** | Associations, companies, agencies, institutions, nationalities and religious or political groups | University of Edinburgh, San Francisco Giants, Google, Democratic Party. |
74
+ | **LOC (location)** | Physical locations (e.g. mountains, bodies of water), geopolitical entities (e.g. cities, states), and facilities (e.g. bridges, buildings, airports). | Rome, Lake Paiku, Chrysler Building, Mount Rushmore, Mississippi River. |
75
+ | **ANIM (animal)** | Breeds of dogs, cats and other animals, including their scientific names. | Maine Coon, African Wild Dog, Great White Shark, New Zealand Bellbird. |
76
+ | **BIO (biological)** | Genus of fungus, bacteria and protoctists, families of viruses, and other biological entities. | Herpes Simplex Virus, Escherichia Coli, Salmonella, Bacillus Anthracis. |
77
+ | **CEL (celestial)** | Planets, stars, asteroids, comets, nebulae, galaxies and other astronomical objects. | Sun, Neptune, Asteroid 187 Lamberta, Proxima Centauri, V838 Monocerotis. |
78
+ | **DIS (disease)** | Physical, mental, infectious, non-infectious, deficiency, inherited, degenerative, social and self-inflicted diseases. | Alzheimer’s Disease, Cystic Fibrosis, Dilated Cardiomyopathy, Arthritis. |
79
+ | **EVE (event)** | Sport events, battles, wars and other events. | American Civil War, 2003 Wimbledon Championships, Cannes Film Festival. |
80
+ | **FOOD (food)** | Foods and drinks. | Carbonara, Sangiovese, Cheddar Beer Fondue, Pizza Margherita. |
81
+ | **INST (instrument)** | Technological instruments, mechanical instruments, musical instruments, and other tools. | Spitzer Space Telescope, Commodore 64, Skype, Apple Watch, Fender Stratocaster. |
82
+ | **MEDIA (media)** | Titles of films, books, magazines, songs and albums, fictional characters and languages. | Forbes, American Psycho, Kiss Me Once, Twin Peaks, Disney Adventures. |
83
+ | **PLANT (plant)** | Types of trees, flowers, and other plants, including their scientific names. | Salix, Quercus Petraea, Douglas Fir, Forsythia, Artemisia Maritima. |
84
+ | **MYTH (mythological)** | Mythological and religious entities. | Apollo, Persephone, Aphrodite, Saint Peter, Pope Gregory I, Hercules. |
85
+ | **TIME (time)** | Specific and well-defined time intervals, such as eras, historical periods, centuries, years and important days. No months and days of the week. | Renaissance, Middle Ages, Christmas, Great Depression, 17th Century, 2012. |
86
+ | **VEHI (vehicle)** | Cars, motorcycles and other vehicles. | Ferrari Testarossa, Suzuki Jimny, Honda CR-X, Boeing 747, Fairey Fulmar. |
87
 
 
88
 
89
+
90
+ ## Inference Example
91
+
92
+ ```python
93
+ # install span_marker
94
+ (env)$ pip install span_marker
95
+
96
+
97
+ from span_marker import SpanMarkerModel
98
+
99
+ model = SpanMarkerModel.from_pretrained("lxyuan/span-marker-bert-base-multilingual-cased-multinerd")
100
+
101
+ description = "Singapore is renowned for its hawker centers offering dishes \
102
+ like Hainanese chicken rice and laksa, while Malaysia boasts dishes such as \
103
+ nasi lemak and rendang, reflecting its rich culinary heritage."
104
+
105
+ entities = model.predict(description)
106
+
107
+ entities
108
+ >>>
109
+ [
110
+ {'span': 'Singapore', 'label': 'LOC', 'score': 0.999988317489624, 'char_start_index': 0, 'char_end_index': 9},
111
+ {'span': 'Hainanese chicken rice', 'label': 'FOOD', 'score': 0.9894770383834839, 'char_start_index': 66, 'char_end_index': 88},
112
+ {'span': 'laksa', 'label': 'FOOD', 'score': 0.9224908947944641, 'char_start_index': 93, 'char_end_index': 98},
113
+ {'span': 'Malaysia', 'label': 'LOC', 'score': 0.9999839067459106, 'char_start_index': 106, 'char_end_index': 114}]
114
+
115
+ # missed: nasi lemak as FOOD
116
+ # missed: rendang as FOOD
117
+ # :(
118
+ ```
119
 
120
  ## Training procedure
121
 
122
+ One can reproduce the result running this [script](https://huggingface.co/tomaarsen/span-marker-mbert-base-multinerd/blob/main/train.py)
123
+
124
  ### Training hyperparameters
125
 
126
  The following hyperparameters were used during training:
 
149
  - Transformers 4.30.2
150
  - Pytorch 2.0.1+cu117
151
  - Datasets 2.14.3
152
+ - Tokenizers 0.13.3