lw2134 commited on
Commit
acb3c2e
1 Parent(s): 9f68eda

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,648 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Alibaba-NLP/gte-large-en-v1.5
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:500
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: "1. What measures should be taken to avoid \"mission creep\" when\
46
+ \ identifying goals for data collection? \n2. Why is it important to assess new\
47
+ \ privacy risks before using collected data in a different context?"
48
+ sentences:
49
+ - "narrow identified goals, to avoid \"mission creep.\" Anticipated data collection\
50
+ \ should be determined to be \nstrictly necessary to the identified goals and\
51
+ \ should be minimized as much as possible. Data collected based on \nthese identified\
52
+ \ goals and for a specific context should not be used in a different context without\
53
+ \ assessing for \nnew privacy risks and implementing appropriate mitigation measures,\
54
+ \ which may include express consent."
55
+ - "Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government\
56
+ \ (December 2020). \nThis white paper recognizes that national security (which\
57
+ \ includes certain law enforcement and \nhomeland security activities) and defense\
58
+ \ activities are of increased sensitivity and interest to our nation’s \nadversaries\
59
+ \ and are often subject to special requirements, such as those governing classified\
60
+ \ information and \nother protected data. Such activities require alternative,\
61
+ \ compatible safeguards through existing policies that"
62
+ - "establish and maintain the capabilities that will allow individuals to use their\
63
+ \ own automated systems to help \nthem make consent, access, and control decisions\
64
+ \ in a complex data ecosystem. Capabilities include machine \nreadable data, standardized\
65
+ \ data formats, metadata or tags for expressing data processing permissions and\
66
+ \ \npreferences and data provenance and lineage, context of use and access-specific\
67
+ \ tags, and training models for \nassessing privacy risk."
68
+ - source_sentence: "1. What types of discrimination are mentioned in the context that\
69
+ \ can impact individuals based on their race and ethnicity? \n2. How does the\
70
+ \ context address discrimination related to gender identity and sexual orientation?"
71
+ sentences:
72
+ - "HUMAN ALTERNATIVES, CONSIDERATION\nALLBACK\nF\nAND\n, \n46"
73
+ - "SAFE AND EFFECTIVE \nSYSTEMS \nWHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\n\
74
+ The expectations for automated systems are meant to serve as a blueprint for the\
75
+ \ development of additional \ntechnical standards and practices that are tailored\
76
+ \ for particular sectors and contexts. \nDerived data sources tracked and reviewed\
77
+ \ carefully. Data that is derived from other data through"
78
+ - "impacts disfavoring people based on their race, color, ethnicity, \nsex \n(including\
79
+ \ \npregnancy, \nchildbirth, \nand \nrelated \nmedical \nconditions, \ngender\
80
+ \ \nidentity, \nintersex \nstatus, \nand \nsexual \norientation), religion, age,\
81
+ \ national origin, disability, veteran status,"
82
+ - source_sentence: "1. What roles do the panelists hold in their respective organizations?\
83
+ \ \n2. How are AI systems and other technologies being discussed in relation\
84
+ \ to their impact by the individual panelists?"
85
+ sentences:
86
+ - "requirements of the Federal agencies that enforce them. These principles are\
87
+ \ not intended to, and do not, \nprohibit or limit any lawful activity of a government\
88
+ \ agency, including law enforcement, national security, or \nintelligence activities.\
89
+ \ \nThe appropriate application of the principles set forth in this white paper\
90
+ \ depends significantly on the \ncontext in which automated systems are being\
91
+ \ utilized. In some circumstances, application of these principles"
92
+ - '•
93
+
94
+ Karen Levy, Assistant Professor, Department of Information Science, Cornell University
95
+
96
+
97
+
98
+ Natasha Duarte, Project Director, Upturn
99
+
100
+
101
+
102
+ Elana Zeide, Assistant Professor, University of Nebraska College of Law
103
+
104
+
105
+
106
+ Fabian Rogers, Constituent Advocate, Office of NY State Senator Jabari Brisport
107
+ and Community
108
+
109
+ Advocate and Floor Captain, Atlantic Plaza Towers Tenants Association
110
+
111
+ The individual panelists described the ways in which AI systems and other technologies
112
+ are increasingly being'
113
+ - "SECTION TITLE­\nFOREWORD\nAmong the great challenges posed to democracy today\
114
+ \ is the use of technology, data, and automated systems in \nways that threaten\
115
+ \ the rights of the American public. Too often, these tools are used to limit\
116
+ \ our opportunities and \nprevent our access to critical resources or services.\
117
+ \ These problems are well documented. In America and around \nthe world, systems\
118
+ \ supposed to help with patient care have proven unsafe, ineffective, or biased.\
119
+ \ Algorithms used"
120
+ - source_sentence: "1. What are the key tenets of the Department of Defense's Artificial\
121
+ \ Intelligence Ethical Principles? \n2. How do the Principles of Artificial Intelligence\
122
+ \ Ethics for the Intelligence Community guide personnel in their use of AI?"
123
+ sentences:
124
+ - "different treatment or impacts disfavoring people based on their race, color,\
125
+ \ ethnicity, sex (including \npregnancy, childbirth, and related medical conditions,\
126
+ \ gender identity, intersex status, and sexual \norientation), religion, age,\
127
+ \ national origin, disability, veteran status, genetic information, or any other\
128
+ \ \nclassification protected by law. Depending on the specific circumstances,\
129
+ \ such algorithmic discrimination"
130
+ - "ethical use and development of AI systems.20 The Department of Defense has adopted\
131
+ \ Artificial Intelligence \nEthical Principles, and tenets for Responsible Artificial\
132
+ \ Intelligence specifically tailored to its national \nsecurity and defense activities.21\
133
+ \ Similarly, the U.S. Intelligence Community (IC) has developed the Principles\
134
+ \ \nof Artificial Intelligence Ethics for the Intelligence Community to guide\
135
+ \ personnel on whether and how to"
136
+ - "DATA PRIVACY \nWHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations\
137
+ \ for automated systems are meant to serve as a blueprint for the development\
138
+ \ of additional \ntechnical standards and practices that are tailored for particular\
139
+ \ sectors and contexts. \nProtect the public from unchecked surveillance \nHeightened\
140
+ \ oversight of surveillance. Surveillance or monitoring systems should be subject\
141
+ \ to"
142
+ - source_sentence: "1. What measures should be taken to ensure the accuracy and timeliness\
143
+ \ of data? \n2. Why is it important to limit access to sensitive data and derived\
144
+ \ data?"
145
+ sentences:
146
+ - "maintain accurate, timely, and complete data. \nLimit access to sensitive data\
147
+ \ and derived data. Sensitive data and derived data should not be sold, \nshared,\
148
+ \ or made public as part of data brokerage or other agreements. Sensitive data\
149
+ \ includes data that can be \nused to infer sensitive information; even systems\
150
+ \ that are not directly marketed as sensitive domain technologies \nare expected\
151
+ \ to keep sensitive data private. Access to such data should be limited based\
152
+ \ on necessity and based"
153
+ - "comply with the Privacy Act’s requirements. Among other things, a court may order\
154
+ \ a federal agency to amend or \ncorrect an individual’s information in its records\
155
+ \ or award monetary damages if an inaccurate, irrelevant, untimely, \nor incomplete\
156
+ \ record results in an adverse determination about an individual’s “qualifications,\
157
+ \ character, rights, … \nopportunities…, or benefits.” \nNIST’s Privacy Framework\
158
+ \ provides a comprehensive, detailed and actionable approach for"
159
+ - "made public whenever possible. Care will need to be taken to balance individual\
160
+ \ privacy with evaluation data \naccess needs. \nReporting. When members of the\
161
+ \ public wish to know what data about them is being used in a system, the \nentity\
162
+ \ responsible for the development of the system should respond quickly with a\
163
+ \ report on the data it has \ncollected or stored about them. Such a report should\
164
+ \ be machine-readable, understandable by most users, and"
165
+ model-index:
166
+ - name: SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
167
+ results:
168
+ - task:
169
+ type: information-retrieval
170
+ name: Information Retrieval
171
+ dataset:
172
+ name: Unknown
173
+ type: unknown
174
+ metrics:
175
+ - type: cosine_accuracy@1
176
+ value: 0.9733333333333334
177
+ name: Cosine Accuracy@1
178
+ - type: cosine_accuracy@3
179
+ value: 1.0
180
+ name: Cosine Accuracy@3
181
+ - type: cosine_accuracy@5
182
+ value: 1.0
183
+ name: Cosine Accuracy@5
184
+ - type: cosine_accuracy@10
185
+ value: 1.0
186
+ name: Cosine Accuracy@10
187
+ - type: cosine_precision@1
188
+ value: 0.9733333333333334
189
+ name: Cosine Precision@1
190
+ - type: cosine_precision@3
191
+ value: 0.33333333333333326
192
+ name: Cosine Precision@3
193
+ - type: cosine_precision@5
194
+ value: 0.19999999999999996
195
+ name: Cosine Precision@5
196
+ - type: cosine_precision@10
197
+ value: 0.09999999999999998
198
+ name: Cosine Precision@10
199
+ - type: cosine_recall@1
200
+ value: 0.9733333333333334
201
+ name: Cosine Recall@1
202
+ - type: cosine_recall@3
203
+ value: 1.0
204
+ name: Cosine Recall@3
205
+ - type: cosine_recall@5
206
+ value: 1.0
207
+ name: Cosine Recall@5
208
+ - type: cosine_recall@10
209
+ value: 1.0
210
+ name: Cosine Recall@10
211
+ - type: cosine_ndcg@10
212
+ value: 0.9901581267619055
213
+ name: Cosine Ndcg@10
214
+ - type: cosine_mrr@10
215
+ value: 0.9866666666666667
216
+ name: Cosine Mrr@10
217
+ - type: cosine_map@100
218
+ value: 0.9866666666666667
219
+ name: Cosine Map@100
220
+ - type: dot_accuracy@1
221
+ value: 0.9733333333333334
222
+ name: Dot Accuracy@1
223
+ - type: dot_accuracy@3
224
+ value: 1.0
225
+ name: Dot Accuracy@3
226
+ - type: dot_accuracy@5
227
+ value: 1.0
228
+ name: Dot Accuracy@5
229
+ - type: dot_accuracy@10
230
+ value: 1.0
231
+ name: Dot Accuracy@10
232
+ - type: dot_precision@1
233
+ value: 0.9733333333333334
234
+ name: Dot Precision@1
235
+ - type: dot_precision@3
236
+ value: 0.33333333333333326
237
+ name: Dot Precision@3
238
+ - type: dot_precision@5
239
+ value: 0.19999999999999996
240
+ name: Dot Precision@5
241
+ - type: dot_precision@10
242
+ value: 0.09999999999999998
243
+ name: Dot Precision@10
244
+ - type: dot_recall@1
245
+ value: 0.9733333333333334
246
+ name: Dot Recall@1
247
+ - type: dot_recall@3
248
+ value: 1.0
249
+ name: Dot Recall@3
250
+ - type: dot_recall@5
251
+ value: 1.0
252
+ name: Dot Recall@5
253
+ - type: dot_recall@10
254
+ value: 1.0
255
+ name: Dot Recall@10
256
+ - type: dot_ndcg@10
257
+ value: 0.9901581267619055
258
+ name: Dot Ndcg@10
259
+ - type: dot_mrr@10
260
+ value: 0.9866666666666667
261
+ name: Dot Mrr@10
262
+ - type: dot_map@100
263
+ value: 0.9866666666666667
264
+ name: Dot Map@100
265
+ ---
266
+
267
+ # SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
268
+
269
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
270
+
271
+ ## Model Details
272
+
273
+ ### Model Description
274
+ - **Model Type:** Sentence Transformer
275
+ - **Base model:** [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) <!-- at revision 104333d6af6f97649377c2afbde10a7704870c7b -->
276
+ - **Maximum Sequence Length:** 8192 tokens
277
+ - **Output Dimensionality:** 1024 tokens
278
+ - **Similarity Function:** Cosine Similarity
279
+ <!-- - **Training Dataset:** Unknown -->
280
+ <!-- - **Language:** Unknown -->
281
+ <!-- - **License:** Unknown -->
282
+
283
+ ### Model Sources
284
+
285
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
286
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
287
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
288
+
289
+ ### Full Model Architecture
290
+
291
+ ```
292
+ SentenceTransformer(
293
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
294
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
295
+ )
296
+ ```
297
+
298
+ ## Usage
299
+
300
+ ### Direct Usage (Sentence Transformers)
301
+
302
+ First install the Sentence Transformers library:
303
+
304
+ ```bash
305
+ pip install -U sentence-transformers
306
+ ```
307
+
308
+ Then you can load this model and run inference.
309
+ ```python
310
+ from sentence_transformers import SentenceTransformer
311
+
312
+ # Download from the 🤗 Hub
313
+ model = SentenceTransformer("lw2134/policy_gte_large")
314
+ # Run inference
315
+ sentences = [
316
+ '1. What measures should be taken to ensure the accuracy and timeliness of data? \n2. Why is it important to limit access to sensitive data and derived data?',
317
+ 'maintain accurate, timely, and complete data. \nLimit access to sensitive data and derived data. Sensitive data and derived data should not be sold, \nshared, or made public as part of data brokerage or other agreements. Sensitive data includes data that can be \nused to infer sensitive information; even systems that are not directly marketed as sensitive domain technologies \nare expected to keep sensitive data private. Access to such data should be limited based on necessity and based',
318
+ 'comply with the Privacy Act’s requirements. Among other things, a court may order a federal agency to amend or \ncorrect an individual’s information in its records or award monetary damages if an inaccurate, irrelevant, untimely, \nor incomplete record results in an adverse determination about an individual’s “qualifications, character, rights, … \nopportunities…, or benefits.” \nNIST’s Privacy Framework provides a comprehensive, detailed and actionable approach for',
319
+ ]
320
+ embeddings = model.encode(sentences)
321
+ print(embeddings.shape)
322
+ # [3, 1024]
323
+
324
+ # Get the similarity scores for the embeddings
325
+ similarities = model.similarity(embeddings, embeddings)
326
+ print(similarities.shape)
327
+ # [3, 3]
328
+ ```
329
+
330
+ <!--
331
+ ### Direct Usage (Transformers)
332
+
333
+ <details><summary>Click to see the direct usage in Transformers</summary>
334
+
335
+ </details>
336
+ -->
337
+
338
+ <!--
339
+ ### Downstream Usage (Sentence Transformers)
340
+
341
+ You can finetune this model on your own dataset.
342
+
343
+ <details><summary>Click to expand</summary>
344
+
345
+ </details>
346
+ -->
347
+
348
+ <!--
349
+ ### Out-of-Scope Use
350
+
351
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
352
+ -->
353
+
354
+ ## Evaluation
355
+
356
+ ### Metrics
357
+
358
+ #### Information Retrieval
359
+
360
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
361
+
362
+ | Metric | Value |
363
+ |:--------------------|:-----------|
364
+ | cosine_accuracy@1 | 0.9733 |
365
+ | cosine_accuracy@3 | 1.0 |
366
+ | cosine_accuracy@5 | 1.0 |
367
+ | cosine_accuracy@10 | 1.0 |
368
+ | cosine_precision@1 | 0.9733 |
369
+ | cosine_precision@3 | 0.3333 |
370
+ | cosine_precision@5 | 0.2 |
371
+ | cosine_precision@10 | 0.1 |
372
+ | cosine_recall@1 | 0.9733 |
373
+ | cosine_recall@3 | 1.0 |
374
+ | cosine_recall@5 | 1.0 |
375
+ | cosine_recall@10 | 1.0 |
376
+ | cosine_ndcg@10 | 0.9902 |
377
+ | cosine_mrr@10 | 0.9867 |
378
+ | **cosine_map@100** | **0.9867** |
379
+ | dot_accuracy@1 | 0.9733 |
380
+ | dot_accuracy@3 | 1.0 |
381
+ | dot_accuracy@5 | 1.0 |
382
+ | dot_accuracy@10 | 1.0 |
383
+ | dot_precision@1 | 0.9733 |
384
+ | dot_precision@3 | 0.3333 |
385
+ | dot_precision@5 | 0.2 |
386
+ | dot_precision@10 | 0.1 |
387
+ | dot_recall@1 | 0.9733 |
388
+ | dot_recall@3 | 1.0 |
389
+ | dot_recall@5 | 1.0 |
390
+ | dot_recall@10 | 1.0 |
391
+ | dot_ndcg@10 | 0.9902 |
392
+ | dot_mrr@10 | 0.9867 |
393
+ | dot_map@100 | 0.9867 |
394
+
395
+ <!--
396
+ ## Bias, Risks and Limitations
397
+
398
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
399
+ -->
400
+
401
+ <!--
402
+ ### Recommendations
403
+
404
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
405
+ -->
406
+
407
+ ## Training Details
408
+
409
+ ### Training Dataset
410
+
411
+ #### Unnamed Dataset
412
+
413
+
414
+ * Size: 500 training samples
415
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
416
+ * Approximate statistics based on the first 500 samples:
417
+ | | sentence_0 | sentence_1 |
418
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
419
+ | type | string | string |
420
+ | details | <ul><li>min: 27 tokens</li><li>mean: 40.71 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 78.92 tokens</li><li>max: 104 tokens</li></ul> |
421
+ * Samples:
422
+ | sentence_0 | sentence_1 |
423
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
424
+ | <code>1. What is the purpose of the AI Bill of Rights mentioned in the context? <br>2. When was the Blueprint for an AI Bill of Rights published?</code> | <code>BLUEPRINT FOR AN <br>AI BILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
425
+ | <code>1. What is the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy? <br>2. When was the Blueprint for an AI Bill of Rights released in relation to the announcement of the process to develop it?</code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered</code> |
426
+ | <code>1. What initiative did the OSTP announce the launch of one year prior to the release mentioned in the context? <br>2. Where can the framework for the AI bill of rights be accessed online?</code> | <code>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered <br>world.” Its release follows a year of public engagement to inform this initiative. The framework is available <br>online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights <br>About the Office of Science and Technology Policy <br>The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology</code> |
427
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
428
+ ```json
429
+ {
430
+ "loss": "MultipleNegativesRankingLoss",
431
+ "matryoshka_dims": [
432
+ 1024,
433
+ 512,
434
+ 256,
435
+ 128,
436
+ 64
437
+ ],
438
+ "matryoshka_weights": [
439
+ 1,
440
+ 1,
441
+ 1,
442
+ 1,
443
+ 1
444
+ ],
445
+ "n_dims_per_step": -1
446
+ }
447
+ ```
448
+
449
+ ### Training Hyperparameters
450
+ #### Non-Default Hyperparameters
451
+
452
+ - `eval_strategy`: steps
453
+ - `per_device_train_batch_size`: 20
454
+ - `per_device_eval_batch_size`: 20
455
+ - `multi_dataset_batch_sampler`: round_robin
456
+
457
+ #### All Hyperparameters
458
+ <details><summary>Click to expand</summary>
459
+
460
+ - `overwrite_output_dir`: False
461
+ - `do_predict`: False
462
+ - `eval_strategy`: steps
463
+ - `prediction_loss_only`: True
464
+ - `per_device_train_batch_size`: 20
465
+ - `per_device_eval_batch_size`: 20
466
+ - `per_gpu_train_batch_size`: None
467
+ - `per_gpu_eval_batch_size`: None
468
+ - `gradient_accumulation_steps`: 1
469
+ - `eval_accumulation_steps`: None
470
+ - `torch_empty_cache_steps`: None
471
+ - `learning_rate`: 5e-05
472
+ - `weight_decay`: 0.0
473
+ - `adam_beta1`: 0.9
474
+ - `adam_beta2`: 0.999
475
+ - `adam_epsilon`: 1e-08
476
+ - `max_grad_norm`: 1
477
+ - `num_train_epochs`: 3
478
+ - `max_steps`: -1
479
+ - `lr_scheduler_type`: linear
480
+ - `lr_scheduler_kwargs`: {}
481
+ - `warmup_ratio`: 0.0
482
+ - `warmup_steps`: 0
483
+ - `log_level`: passive
484
+ - `log_level_replica`: warning
485
+ - `log_on_each_node`: True
486
+ - `logging_nan_inf_filter`: True
487
+ - `save_safetensors`: True
488
+ - `save_on_each_node`: False
489
+ - `save_only_model`: False
490
+ - `restore_callback_states_from_checkpoint`: False
491
+ - `no_cuda`: False
492
+ - `use_cpu`: False
493
+ - `use_mps_device`: False
494
+ - `seed`: 42
495
+ - `data_seed`: None
496
+ - `jit_mode_eval`: False
497
+ - `use_ipex`: False
498
+ - `bf16`: False
499
+ - `fp16`: False
500
+ - `fp16_opt_level`: O1
501
+ - `half_precision_backend`: auto
502
+ - `bf16_full_eval`: False
503
+ - `fp16_full_eval`: False
504
+ - `tf32`: None
505
+ - `local_rank`: 0
506
+ - `ddp_backend`: None
507
+ - `tpu_num_cores`: None
508
+ - `tpu_metrics_debug`: False
509
+ - `debug`: []
510
+ - `dataloader_drop_last`: False
511
+ - `dataloader_num_workers`: 0
512
+ - `dataloader_prefetch_factor`: None
513
+ - `past_index`: -1
514
+ - `disable_tqdm`: False
515
+ - `remove_unused_columns`: True
516
+ - `label_names`: None
517
+ - `load_best_model_at_end`: False
518
+ - `ignore_data_skip`: False
519
+ - `fsdp`: []
520
+ - `fsdp_min_num_params`: 0
521
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
522
+ - `fsdp_transformer_layer_cls_to_wrap`: None
523
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
524
+ - `deepspeed`: None
525
+ - `label_smoothing_factor`: 0.0
526
+ - `optim`: adamw_torch
527
+ - `optim_args`: None
528
+ - `adafactor`: False
529
+ - `group_by_length`: False
530
+ - `length_column_name`: length
531
+ - `ddp_find_unused_parameters`: None
532
+ - `ddp_bucket_cap_mb`: None
533
+ - `ddp_broadcast_buffers`: False
534
+ - `dataloader_pin_memory`: True
535
+ - `dataloader_persistent_workers`: False
536
+ - `skip_memory_metrics`: True
537
+ - `use_legacy_prediction_loop`: False
538
+ - `push_to_hub`: False
539
+ - `resume_from_checkpoint`: None
540
+ - `hub_model_id`: None
541
+ - `hub_strategy`: every_save
542
+ - `hub_private_repo`: False
543
+ - `hub_always_push`: False
544
+ - `gradient_checkpointing`: False
545
+ - `gradient_checkpointing_kwargs`: None
546
+ - `include_inputs_for_metrics`: False
547
+ - `eval_do_concat_batches`: True
548
+ - `fp16_backend`: auto
549
+ - `push_to_hub_model_id`: None
550
+ - `push_to_hub_organization`: None
551
+ - `mp_parameters`:
552
+ - `auto_find_batch_size`: False
553
+ - `full_determinism`: False
554
+ - `torchdynamo`: None
555
+ - `ray_scope`: last
556
+ - `ddp_timeout`: 1800
557
+ - `torch_compile`: False
558
+ - `torch_compile_backend`: None
559
+ - `torch_compile_mode`: None
560
+ - `dispatch_batches`: None
561
+ - `split_batches`: None
562
+ - `include_tokens_per_second`: False
563
+ - `include_num_input_tokens_seen`: False
564
+ - `neftune_noise_alpha`: None
565
+ - `optim_target_modules`: None
566
+ - `batch_eval_metrics`: False
567
+ - `eval_on_start`: False
568
+ - `eval_use_gather_object`: False
569
+ - `batch_sampler`: batch_sampler
570
+ - `multi_dataset_batch_sampler`: round_robin
571
+
572
+ </details>
573
+
574
+ ### Training Logs
575
+ | Epoch | Step | cosine_map@100 |
576
+ |:-----:|:----:|:--------------:|
577
+ | 1.0 | 25 | 0.9867 |
578
+ | 2.0 | 50 | 0.9867 |
579
+ | 3.0 | 75 | 0.9867 |
580
+
581
+
582
+ ### Framework Versions
583
+ - Python: 3.10.12
584
+ - Sentence Transformers: 3.1.1
585
+ - Transformers: 4.44.2
586
+ - PyTorch: 2.4.1+cu121
587
+ - Accelerate: 0.34.2
588
+ - Datasets: 3.0.1
589
+ - Tokenizers: 0.19.1
590
+
591
+ ## Citation
592
+
593
+ ### BibTeX
594
+
595
+ #### Sentence Transformers
596
+ ```bibtex
597
+ @inproceedings{reimers-2019-sentence-bert,
598
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
599
+ author = "Reimers, Nils and Gurevych, Iryna",
600
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
601
+ month = "11",
602
+ year = "2019",
603
+ publisher = "Association for Computational Linguistics",
604
+ url = "https://arxiv.org/abs/1908.10084",
605
+ }
606
+ ```
607
+
608
+ #### MatryoshkaLoss
609
+ ```bibtex
610
+ @misc{kusupati2024matryoshka,
611
+ title={Matryoshka Representation Learning},
612
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
613
+ year={2024},
614
+ eprint={2205.13147},
615
+ archivePrefix={arXiv},
616
+ primaryClass={cs.LG}
617
+ }
618
+ ```
619
+
620
+ #### MultipleNegativesRankingLoss
621
+ ```bibtex
622
+ @misc{henderson2017efficient,
623
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
624
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
625
+ year={2017},
626
+ eprint={1705.00652},
627
+ archivePrefix={arXiv},
628
+ primaryClass={cs.CL}
629
+ }
630
+ ```
631
+
632
+ <!--
633
+ ## Glossary
634
+
635
+ *Clearly define terms in order to be accessible across audiences.*
636
+ -->
637
+
638
+ <!--
639
+ ## Model Card Authors
640
+
641
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
642
+ -->
643
+
644
+ <!--
645
+ ## Model Card Contact
646
+
647
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
648
+ -->
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Alibaba-NLP/gte-large-en-v1.5",
3
+ "architectures": [
4
+ "NewModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
9
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
14
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
15
+ },
16
+ "classifier_dropout": null,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 1024,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "layer_norm_eps": 1e-12,
23
+ "layer_norm_type": "layer_norm",
24
+ "logn_attention_clip1": false,
25
+ "logn_attention_scale": false,
26
+ "max_position_embeddings": 8192,
27
+ "model_type": "new",
28
+ "num_attention_heads": 16,
29
+ "num_hidden_layers": 24,
30
+ "pack_qkv": true,
31
+ "pad_token_id": 0,
32
+ "position_embedding_type": "rope",
33
+ "rope_scaling": {
34
+ "factor": 2.0,
35
+ "type": "ntk"
36
+ },
37
+ "rope_theta": 160000,
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.44.2",
40
+ "type_vocab_size": 2,
41
+ "unpad_inputs": false,
42
+ "use_memory_efficient_attention": false,
43
+ "vocab_size": 30528
44
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b07f5c16df004b21c573194c8d1015f4ad9a52cf18e1c72c9ea6b7b5de4eb8a
3
+ size 1736585680
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 8000,
49
+ "model_max_length": 8192,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff