--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.928 - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb config: plain_text split: test metrics: - name: Accuracy type: accuracy value: 0.928 verified: true - name: Precision type: precision value: 0.9296498554449084 verified: true - name: Recall type: recall value: 0.92608 verified: true - name: AUC type: auc value: 0.9791032256000001 verified: true - name: F1 type: f1 value: 0.9278614940686116 verified: true - name: loss type: loss value: 0.19032225012779236 verified: true --- # distilbert-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.1903 - Accuracy: 0.928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2195 | 1.0 | 1563 | 0.1903 | 0.928 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3