lufercho commited on
Commit
8429b5c
·
verified ·
1 Parent(s): ba2b0ca

Upload fine-tuned LoRA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,731 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:500
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: lufercho/ArxBert-MLM
10
+ widget:
11
+ - source_sentence: "Entanglement increase from local interactions with\n not-completely-positive\
12
+ \ maps"
13
+ sentences:
14
+ - ' Simple examples are constructed that show the entanglement of two qubits
15
+
16
+ being both increased and decreased by interactions on just one of them. One of
17
+
18
+ the two qubits interacts with a third qubit, a control, that is never entangled
19
+
20
+ or correlated with either of the two entangled qubits and is never entangled,
21
+
22
+ but becomes correlated, with the system of those two qubits. The two entangled
23
+
24
+ qubits do not interact, but their state can change from maximally entangled to
25
+
26
+ separable or from separable to maximally entangled. Similar changes for the two
27
+
28
+ qubits are made with a swap operation between one of the qubits and a control;
29
+
30
+ then there are compensating changes of entanglement that involve the control.
31
+
32
+ When the entanglement increases, the map that describes the change of the state
33
+
34
+ of the two entangled qubits is not completely positive. Combination of two
35
+
36
+ independent interactions that individually give exponential decay of the
37
+
38
+ entanglement can cause the entanglement to not decay exponentially but,
39
+
40
+ instead, go to zero at a finite time.
41
+
42
+ '
43
+ - ' Many extra-solar planets discovered over the past decade are gas giants in
44
+
45
+ tight orbits around their host stars. Due to the difficulties of forming these
46
+
47
+ `hot Jupiters'' in situ, they are generally assumed to have migrated to their
48
+
49
+ present orbits through interactions with their nascent discs. In this paper, we
50
+
51
+ present a systematic study of giant planet migration in power law discs. We
52
+
53
+ find that the planetary migration rate is proportional to the disc surface
54
+
55
+ density. This is inconsistent with the assumption that the migration rate is
56
+
57
+ simply the viscous drift speed of the disc. However, this result can be
58
+
59
+ obtained by balancing the angular momentum of the planet with the viscous
60
+
61
+ torque in the disc. We have verified that this result is not affected by
62
+
63
+ adjusting the resolution of the grid, the smoothing length used, or the time at
64
+
65
+ which the planet is released to migrate.
66
+
67
+ '
68
+ - ' We investigate the evolution of binary fractions in star clusters using
69
+
70
+ N-body models of up to 100000 stars. Primordial binary frequencies in these
71
+
72
+ models range from 5% to 50%. Simulations are performed with the NBODY4 code and
73
+
74
+ include a full mass spectrum of stars, stellar evolution, binary evolution and
75
+
76
+ the tidal field of the Galaxy. We find that the overall binary fraction of a
77
+
78
+ cluster almost always remains close to the primordial value, except at late
79
+
80
+ times when a cluster is near dissolution. A critical exception occurs in the
81
+
82
+ central regions where we observe a marked increase in binary fraction with time
83
+
84
+ -- a simulation starting with 100000 stars and 5% binaries reached a core
85
+
86
+ binary frequency as high as 40% at the end of the core-collapse phase
87
+
88
+ (occurring at 16 Gyr with ~20000 stars remaining). Binaries are destroyed in
89
+
90
+ the core by a variety of processes as a cluster evolves, but the combination of
91
+
92
+ mass-segregation and creation of new binaries in exchange interactions produces
93
+
94
+ the observed increase in relative number. We also find that binaries are cycled
95
+
96
+ into and out of cluster cores in a manner that is analogous to convection in
97
+
98
+ stars. For models of 100000 stars we show that the evolution of the core-radius
99
+
100
+ up to the end of the initial phase of core-collapse is not affected by the
101
+
102
+ exact value of the primordial binary frequency (for frequencies of 10% or
103
+
104
+ less). We discuss the ramifications of our results for the likely primordial
105
+
106
+ binary content of globular clusters.
107
+
108
+ '
109
+ - source_sentence: "Vortex proliferation in the Berezinskii-Kosterlitz-Thouless regime\
110
+ \ on a\n two-dimensional lattice of Bose-Einstein condensates"
111
+ sentences:
112
+ - ' While the members of the Type IIn category of supernovae are united by the
113
+
114
+ presence of strong multicomponent Balmer emission lines in their spectra, they
115
+
116
+ are quite heterogeneous with respect to other properties such as Balmer line
117
+
118
+ profiles, light curves, strength of radio emission, and intrinsic brightness.
119
+
120
+ We are now beginning to see variety among SNe IIn in their polarimetric
121
+
122
+ characteristics as well, some but not all of which may be due to inclination
123
+
124
+ angle effects. The increasing number of known "hybrid" SNe with IIn-like
125
+
126
+ emission lines suggests that circumstellar material may be more common around
127
+
128
+ all types of SNe than previously thought. Investigation of the correlations
129
+
130
+ between spectropolarimetric signatures and other IIn attributes will help us
131
+
132
+ address the question of classification of "interacting SNe" and the possibility
133
+
134
+ of distinguishing different groups within the diverse IIn subclass.
135
+
136
+ '
137
+ - ' (Abridged) We compare recent results from X-ray, strong lensing, weak
138
+
139
+ lensing, and optical observations with numerical simulations of the merging
140
+
141
+ galaxy cluster 1E0657-56. X-ray observations reveal a bullet-like subcluster
142
+
143
+ with a prominent bow shock, while lensing results show that the positions of
144
+
145
+ the total mass peaks are consistent with the centroids of the collisionless
146
+
147
+ galaxies (and inconsistent with the X-ray brightness peaks). Previous studies,
148
+
149
+ based on older observational datasets, have placed upper limits on the
150
+
151
+ self-interaction cross-section of dark matter per unit mass, sigma/m, using
152
+
153
+ simplified analytic techniques. In this work, we take advantage of new,
154
+
155
+ higher-quality observational datasets by running N-body simulations of
156
+
157
+ 1E0657-56 that include the effects of self-interacting dark matter, and
158
+
159
+ comparing the results with observations. Furthermore, the recent data allow for
160
+
161
+ a new independent method of constraining sigma/m, based on the non-observation
162
+
163
+ of an offset between the bullet subcluster mass peak and galaxy centroid. This
164
+
165
+ new method places an upper limit (68% confidence) of sigma/m < 1.25 cm^2/g. If
166
+
167
+ we make the assumption that the subcluster and the main cluster had equal
168
+
169
+ mass-to-light ratios prior to the merger, we derive our most stringent
170
+
171
+ constraint of sigma/m < 0.7 cm^2/g, which comes from the consistency of the
172
+
173
+ subcluster''s observed mass-to-light ratio with the main cluster''s, and with
174
+ the
175
+
176
+ universal cluster value, ruling out the possibility of a large fraction of dark
177
+
178
+ matter particles being scattered away due to collisions. Our limit is a slight
179
+
180
+ improvement over the previous result from analytic estimates, and rules out
181
+
182
+ most of the 0.5 - 5cm^2/g range invoked to explain inconsistencies between the
183
+
184
+ standard collisionless cold dark matter model and observations.
185
+
186
+ '
187
+ - ' We observe the proliferation of vortices in the
188
+
189
+ Berezinskii-Kosterlitz-Thouless regime on a two-dimensional array of
190
+
191
+ Josephson-coupled Bose-Einstein condensates. As long as the Josephson
192
+
193
+ (tunneling) energy J exceeds the thermal energy T, the array is vortex-free.
194
+
195
+ With decreasing J/T, vortices appear in the system in ever greater numbers. We
196
+
197
+ confirm thermal activation as the vortex formation mechanism and obtain
198
+
199
+ information on the size of bound vortex pairs as J/T is varied.
200
+
201
+ '
202
+ - source_sentence: "Geometric Complexity Theory V: On deciding nonvanishing of a generalized\n\
203
+ \ Littlewood-Richardson coefficient"
204
+ sentences:
205
+ - ' I shall present three arguments for the proposition that intelligent life is
206
+
207
+ very rare in the universe. First, I shall summarize the consensus opinion of
208
+
209
+ the founders of the Modern Synthesis (Simpson, Dobzhanski, and Mayr) that the
210
+
211
+ evolution of intelligent life is exceedingly improbable. Second, I shall
212
+
213
+ develop the Fermi Paradox: if they existed they''d be here. Third, I shall show
214
+
215
+ that if intelligent life were too common, it would use up all available
216
+
217
+ resources and die out. But I shall show that the quantum mechanical principle
218
+
219
+ of unitarity (actually a form of teleology!) requires intelligent life to
220
+
221
+ survive to the end of time. Finally, I shall argue that, if the universe is
222
+
223
+ indeed accelerating, then survival to the end of time requires that intelligent
224
+
225
+ life, though rare, to have evolved several times in the visible universe. I
226
+
227
+ shall argue that the acceleration is a consequence of the excess of matter over
228
+
229
+ antimatter in the universe. I shall suggest experiments to test these claims.
230
+
231
+ '
232
+ - " This article has been withdrawn because it has been merged with the earlier\n\
233
+ article GCT3 (arXiv: CS/0501076 [cs.CC]) in the series. The merged article is\n\
234
+ now available as:\n Geometric Complexity Theory III: on deciding nonvanishing\
235
+ \ of a\nLittlewood-Richardson Coefficient, Journal of Algebraic Combinatorics,\
236
+ \ vol. 36,\nissue 1, 2012, pp. 103-110. (Authors: Ketan Mulmuley, Hari Narayanan\
237
+ \ and Milind\nSohoni)\n The new article in this GCT5 slot in the series is:\n\
238
+ \ Geometric Complexity Theory V: Equivalence between blackbox derandomization\n\
239
+ of polynomial identity testing and derandomization of Noether's Normalization\n\
240
+ Lemma, in the Proceedings of FOCS 2012 (abstract), arXiv:1209.5993 [cs.CC]\n(full\
241
+ \ version) (Author: Ketan Mulmuley)\n"
242
+ - ' We use high-resolution near-infrared spectroscopy from Keck Observatory to
243
+
244
+ measure the stellar velocity dispersions of 19 super star clusters (SSCs) in
245
+
246
+ the nuclear starburst of M82. The clusters have ages on the order of 10 Myr,
247
+
248
+ which is many times longer than the crossing times implied by their velocity
249
+
250
+ dispersions and radii. We therefore apply the Virial Theorem to derive the
251
+
252
+ kinematic mass for 15 of the SSCs. The SSCs have masses of 2 x 10^5 to 4 x 10^6
253
+
254
+ solar masses, with a total population mass of 1.4 x 10^7 solar masses.
255
+
256
+ Comparison of the loci of the young M82 SSCs and old Milky Way globular
257
+
258
+ clusters in a plot of radius versus velocity dispersion suggests that the SSCs
259
+
260
+ are a population of potential globular clusters. We present the mass function
261
+
262
+ for the SSCs, and find a power law fit with an index of gamma = -1.91 +/- 0.06.
263
+
264
+ This result is nearly identical to the mass function of young SSCs in the
265
+
266
+ Antennae galaxies.
267
+
268
+ '
269
+ - source_sentence: "Teleparallel Version of the Stationary Axisymmetric Solutions\
270
+ \ and their\n Energy Contents"
271
+ sentences:
272
+ - ' We present a review of the discrete dipole approximation (DDA), which is a
273
+
274
+ general method to simulate light scattering by arbitrarily shaped particles. We
275
+
276
+ put the method in historical context and discuss recent developments, taking
277
+
278
+ the viewpoint of a general framework based on the integral equations for the
279
+
280
+ electric field. We review both the theory of the DDA and its numerical aspects,
281
+
282
+ the latter being of critical importance for any practical application of the
283
+
284
+ method. Finally, the position of the DDA among other methods of light
285
+
286
+ scattering simulation is shown and possible future developments are discussed.
287
+
288
+ '
289
+ - ' This work contains the teleparallel version of the stationary axisymmetric
290
+
291
+ solutions. We obtain the tetrad and the torsion fields representing these
292
+
293
+ solutions. The tensor, vector and axial-vector parts of the torsion tensor are
294
+
295
+ evaluated. It is found that the axial-vector has component only along $\rho$
296
+
297
+ and $z$ directions. The three possibilities of the axial vector depending on
298
+
299
+ the metric function $B$ are discussed. The vector related with spin has also
300
+
301
+ been evaluated and the corresponding extra Hamiltonian is furnished. Further,
302
+
303
+ we use the teleparallel version of M$\ddot{o}$ller prescription to find the
304
+
305
+ energy-momentum distribution of the solutions. It is interesting to note that
306
+
307
+ (for $\lambda=1$) energy and momentum densities in teleparallel theory are
308
+
309
+ equal to the corresponding quantities in GR plus an additional quantity in
310
+
311
+ each, which may become equal under certain conditions. Finally, we discuss the
312
+
313
+ two special cases of the stationary axisymmetric solutions.
314
+
315
+ '
316
+ - ' Most recently, both BaBar and Belle experiments found evidences of neutral
317
+
318
+ $D$ mixing. In this paper, we discuss the constraints on the strong phase
319
+
320
+ difference in $D^0 \to K\pi$ decay from the measurements of the mixing
321
+
322
+ parameters, $y^\prime$, $y_{CP}$ and $x$ at the $B$ factories. The sensitivity
323
+
324
+ of the measurement of the mixing parameter $y$ is estimated in BES-III
325
+
326
+ experiment at $\psi(3770)$ peak. We also make an estimate on the measurements
327
+
328
+ of the mixing rate $R_M$. Finally, the sensitivity of the strong phase
329
+
330
+ difference at BES-III are obtained by using data near the $D\bar{D}$ threshold
331
+
332
+ with CP tag technique at BES-III experiment.
333
+
334
+ '
335
+ - source_sentence: "Approximation of the distribution of a stationary Markov process\
336
+ \ with\n application to option pricing"
337
+ sentences:
338
+ - ' We build a sequence of empirical measures on the space D(R_+,R^d) of
339
+
340
+ R^d-valued c\`adl\`ag functions on R_+ in order to approximate the law of a
341
+
342
+ stationary R^d-valued Markov and Feller process (X_t). We obtain some general
343
+
344
+ results of convergence of this sequence. Then, we apply them to Brownian
345
+
346
+ diffusions and solutions to L\''evy driven SDE''s under some Lyapunov-type
347
+
348
+ stability assumptions. As a numerical application of this work, we show that
349
+
350
+ this procedure gives an efficient way of option pricing in stochastic
351
+
352
+ volatility models.
353
+
354
+ '
355
+ - ' We provide a new estimate of the local supermassive black hole mass function
356
+
357
+ using (i) the empirical relation between supermassive black hole mass and the
358
+
359
+ Sersic index of the host spheroidal stellar system and (ii) the measured
360
+
361
+ (spheroid) Sersic indices drawn from 10k galaxies in the Millennium Galaxy
362
+
363
+ Catalogue. The observational simplicity of our approach, and the direct
364
+
365
+ measurements of the black hole predictor quantity, i.e. the Sersic index, for
366
+
367
+ both elliptical galaxies and the bulges of disc galaxies makes it
368
+
369
+ straightforward to estimate accurate black hole masses in early- and late-type
370
+
371
+ galaxies alike. We have parameterised the supermassive black hole mass function
372
+
373
+ with a Schechter function and find, at the low-mass end, a logarithmic slope
374
+
375
+ (1+alpha) of ~0.7 for the full galaxy sample and ~1.0 for the early-type galaxy
376
+
377
+ sample. Considering spheroidal stellar systems brighter than M_B = -18 mag, and
378
+
379
+ integrating down to black hole masses of 10^6 M_sun, we find that the local
380
+
381
+ mass density of supermassive black holes in early-type galaxies rho_{bh,
382
+
383
+ early-type} = (3.5+/-1.2) x 10^5 h^3_{70} M_sun Mpc^{-3}, and in late-type
384
+
385
+ galaxies rho_{bh, late-type} = (1.0+/-0.5) x 10^5 h^3_{70} M_sun Mpc^{-3}. The
386
+
387
+ uncertainties are derived from Monte Carlo simulations which include
388
+
389
+ uncertainties in the M_bh-n relation, the catalogue of Sersic indices, the
390
+
391
+ galaxy weights and Malmquist bias. The combined, cosmological, supermassive
392
+
393
+ black hole mass density is thus Omega_{bh, total} = (3.2+/-1.2) x 10^{-6} h_70.
394
+
395
+ That is, using a new and independent method, we conclude that (0.007+/-0.003)
396
+
397
+ h^3_{70} per cent of the universe''s baryons are presently locked up in
398
+
399
+ supermassive black holes at the centres of galaxies.
400
+
401
+ '
402
+ - ' We treat Koll\''ar''s injectivity theorem from the analytic (or differential
403
+
404
+ geometric) viewpoint. More precisely, we give a curvature condition which
405
+
406
+ implies Koll\''ar type cohomology injectivity theorems. Our main theorem is
407
+
408
+ formulated for a compact K\"ahler manifold, but the proof uses the space of
409
+
410
+ harmonic forms on a Zariski open set with a suitable complete K\"ahler metric.
411
+
412
+ We need neither covering tricks, desingularizations, nor Leray''s spectral
413
+
414
+ sequence.
415
+
416
+ '
417
+ pipeline_tag: sentence-similarity
418
+ library_name: sentence-transformers
419
+ ---
420
+
421
+ # SentenceTransformer based on lufercho/ArxBert-MLM
422
+
423
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [lufercho/ArxBert-MLM](https://huggingface.co/lufercho/ArxBert-MLM). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
424
+
425
+ ## Model Details
426
+
427
+ ### Model Description
428
+ - **Model Type:** Sentence Transformer
429
+ - **Base model:** [lufercho/ArxBert-MLM](https://huggingface.co/lufercho/ArxBert-MLM) <!-- at revision a24b2f13eb71c311057a26155ae49bf16a0439ec -->
430
+ - **Maximum Sequence Length:** 512 tokens
431
+ - **Output Dimensionality:** 768 dimensions
432
+ - **Similarity Function:** Cosine Similarity
433
+ <!-- - **Training Dataset:** Unknown -->
434
+ <!-- - **Language:** Unknown -->
435
+ <!-- - **License:** Unknown -->
436
+
437
+ ### Model Sources
438
+
439
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
440
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
441
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
442
+
443
+ ### Full Model Architecture
444
+
445
+ ```
446
+ SentenceTransformer(
447
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
448
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
449
+ )
450
+ ```
451
+
452
+ ## Usage
453
+
454
+ ### Direct Usage (Sentence Transformers)
455
+
456
+ First install the Sentence Transformers library:
457
+
458
+ ```bash
459
+ pip install -U sentence-transformers
460
+ ```
461
+
462
+ Then you can load this model and run inference.
463
+ ```python
464
+ from sentence_transformers import SentenceTransformer
465
+
466
+ # Download from the 🤗 Hub
467
+ model = SentenceTransformer("sentence_transformers_model_id")
468
+ # Run inference
469
+ sentences = [
470
+ 'Approximation of the distribution of a stationary Markov process with\n application to option pricing',
471
+ " We build a sequence of empirical measures on the space D(R_+,R^d) of\nR^d-valued c\\`adl\\`ag functions on R_+ in order to approximate the law of a\nstationary R^d-valued Markov and Feller process (X_t). We obtain some general\nresults of convergence of this sequence. Then, we apply them to Brownian\ndiffusions and solutions to L\\'evy driven SDE's under some Lyapunov-type\nstability assumptions. As a numerical application of this work, we show that\nthis procedure gives an efficient way of option pricing in stochastic\nvolatility models.\n",
472
+ " We provide a new estimate of the local supermassive black hole mass function\nusing (i) the empirical relation between supermassive black hole mass and the\nSersic index of the host spheroidal stellar system and (ii) the measured\n(spheroid) Sersic indices drawn from 10k galaxies in the Millennium Galaxy\nCatalogue. The observational simplicity of our approach, and the direct\nmeasurements of the black hole predictor quantity, i.e. the Sersic index, for\nboth elliptical galaxies and the bulges of disc galaxies makes it\nstraightforward to estimate accurate black hole masses in early- and late-type\ngalaxies alike. We have parameterised the supermassive black hole mass function\nwith a Schechter function and find, at the low-mass end, a logarithmic slope\n(1+alpha) of ~0.7 for the full galaxy sample and ~1.0 for the early-type galaxy\nsample. Considering spheroidal stellar systems brighter than M_B = -18 mag, and\nintegrating down to black hole masses of 10^6 M_sun, we find that the local\nmass density of supermassive black holes in early-type galaxies rho_{bh,\nearly-type} = (3.5+/-1.2) x 10^5 h^3_{70} M_sun Mpc^{-3}, and in late-type\ngalaxies rho_{bh, late-type} = (1.0+/-0.5) x 10^5 h^3_{70} M_sun Mpc^{-3}. The\nuncertainties are derived from Monte Carlo simulations which include\nuncertainties in the M_bh-n relation, the catalogue of Sersic indices, the\ngalaxy weights and Malmquist bias. The combined, cosmological, supermassive\nblack hole mass density is thus Omega_{bh, total} = (3.2+/-1.2) x 10^{-6} h_70.\nThat is, using a new and independent method, we conclude that (0.007+/-0.003)\nh^3_{70} per cent of the universe's baryons are presently locked up in\nsupermassive black holes at the centres of galaxies.\n",
473
+ ]
474
+ embeddings = model.encode(sentences)
475
+ print(embeddings.shape)
476
+ # [3, 768]
477
+
478
+ # Get the similarity scores for the embeddings
479
+ similarities = model.similarity(embeddings, embeddings)
480
+ print(similarities.shape)
481
+ # [3, 3]
482
+ ```
483
+
484
+ <!--
485
+ ### Direct Usage (Transformers)
486
+
487
+ <details><summary>Click to see the direct usage in Transformers</summary>
488
+
489
+ </details>
490
+ -->
491
+
492
+ <!--
493
+ ### Downstream Usage (Sentence Transformers)
494
+
495
+ You can finetune this model on your own dataset.
496
+
497
+ <details><summary>Click to expand</summary>
498
+
499
+ </details>
500
+ -->
501
+
502
+ <!--
503
+ ### Out-of-Scope Use
504
+
505
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
506
+ -->
507
+
508
+ <!--
509
+ ## Bias, Risks and Limitations
510
+
511
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
512
+ -->
513
+
514
+ <!--
515
+ ### Recommendations
516
+
517
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
518
+ -->
519
+
520
+ ## Training Details
521
+
522
+ ### Training Dataset
523
+
524
+ #### Unnamed Dataset
525
+
526
+
527
+ * Size: 500 training samples
528
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
529
+ * Approximate statistics based on the first 500 samples:
530
+ | | sentence_0 | sentence_1 |
531
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
532
+ | type | string | string |
533
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.92 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 175.28 tokens</li><li>max: 512 tokens</li></ul> |
534
+ * Samples:
535
+ | sentence_0 | sentence_1 |
536
+ |:----------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
537
+ | <code>Lifetime of doubly charmed baryons</code> | <code> In this work, we evaluate the lifetimes of the doubly charmed baryons<br>$\Xi_{cc}^{+}$, $\Xi_{cc}^{++}$ and $\Omega_{cc}^{+}$. We carefully calculate<br>the non-spectator contributions at the quark level where the Cabibbo-suppressed<br>diagrams are also included. The hadronic matrix elements are evaluated in the<br>simple non-relativistic harmonic oscillator model. Our numerical results are<br>generally consistent with that obtained by other authors who used the diquark<br>model. However, all the theoretical predictions on the lifetimes are one order<br>larger than the upper limit set by the recent SELEX measurement. This<br>discrepancy would be clarified by the future experiment, if more accurate<br>experiment still confirms the value of the SELEX collaboration, there must be<br>some unknown mechanism to be explored.<br></code> |
538
+ | <code>Broadening the Higgs Boson with Right-Handed Neutrinos and a Higher<br> Dimension Operator at the Electroweak Scale</code> | <code> The existence of certain TeV suppressed higher-dimension operators may open<br>up new decay channels for the Higgs boson to decay into lighter right-handed<br>neutrinos. These channels may dominate over all other channels if the Higgs<br>boson is light. For a Higgs boson mass larger than $2 m_W$ the new decays are<br>subdominant yet still of interest. The right-handed neutrinos have macroscopic<br>decay lengths and decay mostly into final states containing leptons and quarks.<br>A distinguishing collider signature of this scenario is a pair of displaced<br>vertices violating lepton number. A general operator analysis is performed<br>using the minimal flavor violation hypothesis to illustrate that these novel<br>decay processes can occur while remaining consistent with experimental<br>constraints on lepton number violating processes. In this context the question<br>of whether these new decay modes dominate is found to depend crucially on the<br>approximate flavor symmetries of the right-handed neutrinos.<br></code> |
539
+ | <code>Infrared Evolution Equations: Method and Applications</code> | <code> It is a brief review on composing and solving Infrared Evolution Equations.<br>They can be used in order to calculate amplitudes of high-energy reactions in<br>different kinematic regions in the double-logarithmic approximation.<br></code> |
540
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
541
+ ```json
542
+ {
543
+ "scale": 20.0,
544
+ "similarity_fct": "cos_sim"
545
+ }
546
+ ```
547
+
548
+ ### Training Hyperparameters
549
+ #### Non-Default Hyperparameters
550
+
551
+ - `per_device_train_batch_size`: 16
552
+ - `per_device_eval_batch_size`: 16
553
+ - `num_train_epochs`: 10
554
+ - `multi_dataset_batch_sampler`: round_robin
555
+
556
+ #### All Hyperparameters
557
+ <details><summary>Click to expand</summary>
558
+
559
+ - `overwrite_output_dir`: False
560
+ - `do_predict`: False
561
+ - `eval_strategy`: no
562
+ - `prediction_loss_only`: True
563
+ - `per_device_train_batch_size`: 16
564
+ - `per_device_eval_batch_size`: 16
565
+ - `per_gpu_train_batch_size`: None
566
+ - `per_gpu_eval_batch_size`: None
567
+ - `gradient_accumulation_steps`: 1
568
+ - `eval_accumulation_steps`: None
569
+ - `torch_empty_cache_steps`: None
570
+ - `learning_rate`: 5e-05
571
+ - `weight_decay`: 0.0
572
+ - `adam_beta1`: 0.9
573
+ - `adam_beta2`: 0.999
574
+ - `adam_epsilon`: 1e-08
575
+ - `max_grad_norm`: 1
576
+ - `num_train_epochs`: 10
577
+ - `max_steps`: -1
578
+ - `lr_scheduler_type`: linear
579
+ - `lr_scheduler_kwargs`: {}
580
+ - `warmup_ratio`: 0.0
581
+ - `warmup_steps`: 0
582
+ - `log_level`: passive
583
+ - `log_level_replica`: warning
584
+ - `log_on_each_node`: True
585
+ - `logging_nan_inf_filter`: True
586
+ - `save_safetensors`: True
587
+ - `save_on_each_node`: False
588
+ - `save_only_model`: False
589
+ - `restore_callback_states_from_checkpoint`: False
590
+ - `no_cuda`: False
591
+ - `use_cpu`: False
592
+ - `use_mps_device`: False
593
+ - `seed`: 42
594
+ - `data_seed`: None
595
+ - `jit_mode_eval`: False
596
+ - `use_ipex`: False
597
+ - `bf16`: False
598
+ - `fp16`: False
599
+ - `fp16_opt_level`: O1
600
+ - `half_precision_backend`: auto
601
+ - `bf16_full_eval`: False
602
+ - `fp16_full_eval`: False
603
+ - `tf32`: None
604
+ - `local_rank`: 0
605
+ - `ddp_backend`: None
606
+ - `tpu_num_cores`: None
607
+ - `tpu_metrics_debug`: False
608
+ - `debug`: []
609
+ - `dataloader_drop_last`: False
610
+ - `dataloader_num_workers`: 0
611
+ - `dataloader_prefetch_factor`: None
612
+ - `past_index`: -1
613
+ - `disable_tqdm`: False
614
+ - `remove_unused_columns`: True
615
+ - `label_names`: None
616
+ - `load_best_model_at_end`: False
617
+ - `ignore_data_skip`: False
618
+ - `fsdp`: []
619
+ - `fsdp_min_num_params`: 0
620
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
621
+ - `fsdp_transformer_layer_cls_to_wrap`: None
622
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
623
+ - `deepspeed`: None
624
+ - `label_smoothing_factor`: 0.0
625
+ - `optim`: adamw_torch
626
+ - `optim_args`: None
627
+ - `adafactor`: False
628
+ - `group_by_length`: False
629
+ - `length_column_name`: length
630
+ - `ddp_find_unused_parameters`: None
631
+ - `ddp_bucket_cap_mb`: None
632
+ - `ddp_broadcast_buffers`: False
633
+ - `dataloader_pin_memory`: True
634
+ - `dataloader_persistent_workers`: False
635
+ - `skip_memory_metrics`: True
636
+ - `use_legacy_prediction_loop`: False
637
+ - `push_to_hub`: False
638
+ - `resume_from_checkpoint`: None
639
+ - `hub_model_id`: None
640
+ - `hub_strategy`: every_save
641
+ - `hub_private_repo`: False
642
+ - `hub_always_push`: False
643
+ - `gradient_checkpointing`: False
644
+ - `gradient_checkpointing_kwargs`: None
645
+ - `include_inputs_for_metrics`: False
646
+ - `include_for_metrics`: []
647
+ - `eval_do_concat_batches`: True
648
+ - `fp16_backend`: auto
649
+ - `push_to_hub_model_id`: None
650
+ - `push_to_hub_organization`: None
651
+ - `mp_parameters`:
652
+ - `auto_find_batch_size`: False
653
+ - `full_determinism`: False
654
+ - `torchdynamo`: None
655
+ - `ray_scope`: last
656
+ - `ddp_timeout`: 1800
657
+ - `torch_compile`: False
658
+ - `torch_compile_backend`: None
659
+ - `torch_compile_mode`: None
660
+ - `dispatch_batches`: None
661
+ - `split_batches`: None
662
+ - `include_tokens_per_second`: False
663
+ - `include_num_input_tokens_seen`: False
664
+ - `neftune_noise_alpha`: None
665
+ - `optim_target_modules`: None
666
+ - `batch_eval_metrics`: False
667
+ - `eval_on_start`: False
668
+ - `use_liger_kernel`: False
669
+ - `eval_use_gather_object`: False
670
+ - `average_tokens_across_devices`: False
671
+ - `prompts`: None
672
+ - `batch_sampler`: batch_sampler
673
+ - `multi_dataset_batch_sampler`: round_robin
674
+
675
+ </details>
676
+
677
+ ### Framework Versions
678
+ - Python: 3.10.12
679
+ - Sentence Transformers: 3.3.1
680
+ - Transformers: 4.46.2
681
+ - PyTorch: 2.5.1+cu121
682
+ - Accelerate: 1.1.1
683
+ - Datasets: 3.1.0
684
+ - Tokenizers: 0.20.3
685
+
686
+ ## Citation
687
+
688
+ ### BibTeX
689
+
690
+ #### Sentence Transformers
691
+ ```bibtex
692
+ @inproceedings{reimers-2019-sentence-bert,
693
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
694
+ author = "Reimers, Nils and Gurevych, Iryna",
695
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
696
+ month = "11",
697
+ year = "2019",
698
+ publisher = "Association for Computational Linguistics",
699
+ url = "https://arxiv.org/abs/1908.10084",
700
+ }
701
+ ```
702
+
703
+ #### MultipleNegativesRankingLoss
704
+ ```bibtex
705
+ @misc{henderson2017efficient,
706
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
707
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
708
+ year={2017},
709
+ eprint={1705.00652},
710
+ archivePrefix={arXiv},
711
+ primaryClass={cs.CL}
712
+ }
713
+ ```
714
+
715
+ <!--
716
+ ## Glossary
717
+
718
+ *Clearly define terms in order to be accessible across audiences.*
719
+ -->
720
+
721
+ <!--
722
+ ## Model Card Authors
723
+
724
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
725
+ -->
726
+
727
+ <!--
728
+ ## Model Card Contact
729
+
730
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
731
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lufercho/ArxBert-MLM",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9b8894d656d5ba8f4dd9ba37012e6479637b6aff93c1a75e1153d75b03d7e40
3
+ size 440317448
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff