lucyknada commited on
Commit
87baab2
·
verified ·
1 Parent(s): 6f2aa8f

Upload ./README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +269 -0
README.md ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - falcon3
5
+ base_model: tiiuae/Falcon3-10B-Base
6
+ license: other
7
+ license_name: falcon-llm-license
8
+ license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
9
+ ---
10
+ ### exl2 quant (measurement.json in main branch)
11
+ ---
12
+ ### check revisions for quants
13
+ ---
14
+
15
+
16
+ <div align="center">
17
+ <img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
18
+ </div>
19
+
20
+ # Falcon3-10B-Instruct
21
+
22
+ **Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
23
+
24
+ This repository contains the **Falcon3-10B-Instruct**. It achieves state-of-the-art results (at the time of release) on reasoning, language understanding, instruction following, code and mathematics tasks.
25
+ Falcon3-10B-Instruct supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K.
26
+
27
+
28
+ ## Model Details
29
+ - Architecture
30
+ - Transformer-based causal decoder-only architecture
31
+ - 40 decoder blocks
32
+ - Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
33
+ - Wider head dimension: 256
34
+ - High RoPE value to support long context understanding: 1000042
35
+ - Uses SwiGLu and RMSNorm
36
+ - 32K context length
37
+ - 131K vocab size
38
+ - Depth up-scaled from **Falcon3-7B-Base** with 2 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
39
+ - Posttrained on 1.2 million samples of STEM, conversational, code, safety and function call data
40
+ - Supports EN, FR, ES, PT
41
+ - Developed by [Technology Innovation Institute](https://www.tii.ae)
42
+ - License: TII Falcon-LLM License 2.0
43
+ - Model Release Date: December 2024
44
+
45
+
46
+ ## Getting started
47
+
48
+ <details>
49
+ <summary> Click to expand </summary>
50
+
51
+ ```python
52
+ from transformers import AutoTokenizer, AutoModelForCausalLM
53
+
54
+
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
+
57
+ model_name = "tiiuae/Falcon3-10B-Instruct"
58
+
59
+ model = AutoModelForCausalLM.from_pretrained(
60
+ model_name,
61
+ torch_dtype="auto",
62
+ device_map="auto"
63
+ )
64
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
65
+
66
+ prompt = "How many hours in one day?"
67
+ messages = [
68
+ {"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
69
+ {"role": "user", "content": prompt}
70
+ ]
71
+ text = tokenizer.apply_chat_template(
72
+ messages,
73
+ tokenize=False,
74
+ add_generation_prompt=True
75
+ )
76
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
77
+
78
+ generated_ids = model.generate(
79
+ **model_inputs,
80
+ max_new_tokens=1024
81
+ )
82
+ generated_ids = [
83
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
84
+ ]
85
+
86
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
87
+ print(response)
88
+ ```
89
+
90
+ </details>
91
+
92
+ <br>
93
+
94
+ ## Benchmarks
95
+ We report in the following table our internal pipeline benchmarks.
96
+ - We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
97
+ - We report **raw scores** obtained by applying chat template **without fewshot_as_multiturn** (unlike Llama3.1).
98
+ - We use same batch-size across all models.
99
+
100
+
101
+
102
+ <table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
103
+ <colgroup>
104
+ <col style="width: 10%;">
105
+ <col style="width: 10%;">
106
+ <col style="width: 7%;">
107
+ <col style="width: 7%;">
108
+ <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
109
+ </colgroup>
110
+ <thead>
111
+ <tr>
112
+ <th>Category</th>
113
+ <th>Benchmark</th>
114
+ <th>Yi-1.5-9B-Chat</th>
115
+ <th>Mistral-Nemo-Base-2407 (12B)</th>
116
+ <th>Falcon3-10B-Instruct</th>
117
+ </tr>
118
+ </thead>
119
+ <tbody>
120
+ <tr>
121
+ <td rowspan="3">General</td>
122
+ <td>MMLU (5-shot)</td>
123
+ <td>70</td>
124
+ <td>65.9</td>
125
+ <td><b>71.6</td>
126
+ </tr>
127
+ <tr>
128
+ <td>MMLU-PRO (5-shot)</td>
129
+ <td>39.6</td>
130
+ <td>32.7</td>
131
+ <td><b>44</td>
132
+ </tr>
133
+ <tr>
134
+ <td>IFEval</td>
135
+ <td>57.6</td>
136
+ <td>63.4</td>
137
+ <td><b>78</td>
138
+ </tr>
139
+ <tr>
140
+ <td rowspan="3">Math</td>
141
+ <td>GSM8K (5-shot)</td>
142
+ <td>76.6</td>
143
+ <td>73.8</td>
144
+ <td><b>83.1</td>
145
+ </tr>
146
+ <tr>
147
+ <td>GSM8K (8-shot, COT)</td>
148
+ <td>78.5</td>
149
+ <td>73.6</td>
150
+ <td><b>81.3</td>
151
+ </tr>
152
+ <tr>
153
+ <td>MATH Lvl-5 (4-shot)</td>
154
+ <td>8.8</td>
155
+ <td>0.4</td>
156
+ <td><b>22.1</td>
157
+ </tr>
158
+ <tr>
159
+ <td rowspan="5">Reasoning</td>
160
+ <td>Arc Challenge (25-shot)</td>
161
+ <td>51.9</td>
162
+ <td>61.6</td>
163
+ <td><b>64.5</td>
164
+ </tr>
165
+ <tr>
166
+ <td>GPQA (0-shot)</td>
167
+ <td><b>35.4</td>
168
+ <td>33.2</td>
169
+ <td>33.5</td>
170
+ </tr>
171
+ <tr>
172
+ <td>GPQA (0-shot, COT)</td>
173
+ <td>16</td>
174
+ <td>12.7</td>
175
+ <td><b>32.6</td>
176
+ </tr>
177
+ <tr>
178
+ <td>MUSR (0-shot)</td>
179
+ <td><b>41.9</td>
180
+ <td>38.1</td>
181
+ <td>41.1</td>
182
+ </tr>
183
+ <tr>
184
+ <td>BBH (3-shot)</td>
185
+ <td>49.2</td>
186
+ <td>43.6</td>
187
+ <td><b>58.4</td>
188
+ </tr>
189
+ <tr>
190
+ <td rowspan="4">CommonSense Understanding</td>
191
+ <td>PIQA (0-shot)</td>
192
+ <td>76.4</td>
193
+ <td>78.2</td>
194
+ <td><b>78.4</td>
195
+ </tr>
196
+ <tr>
197
+ <td>SciQ (0-shot)</td>
198
+ <td>61.7</td>
199
+ <td>76.4</td>
200
+ <td><b>90.4</td>
201
+ </tr>
202
+ <tr>
203
+ <td>Winogrande (0-shot)</td>
204
+ <td>-</td>
205
+ <td>-</td>
206
+ <td>71.3</td>
207
+ </tr>
208
+ <tr>
209
+ <td>OpenbookQA (0-shot)</td>
210
+ <td>43.2</td>
211
+ <td>47.4</td>
212
+ <td><b>48.2</td>
213
+ </tr>
214
+ <tr>
215
+ <td rowspan="2">Instructions following</td>
216
+ <td>MT-Bench (avg)</td>
217
+ <td>8.28</td>
218
+ <td><b>8.6</td>
219
+ <td>8.17</td>
220
+ </tr>
221
+ <tr>
222
+ <td>Alpaca (WC)</td>
223
+ <td>25.81</td>
224
+ <td><b>45.44</td>
225
+ <td>24.7</td>
226
+ </tr>
227
+ <tr>
228
+ <td>Tool use</td>
229
+ <td>BFCL AST (avg)</td>
230
+ <td>48.4</td>
231
+ <td>74.2</td>
232
+ <td><b>86.3</td>
233
+ </tr>
234
+ <tr>
235
+ <td rowspan="2">Code</td>
236
+ <td>EvalPlus (0-shot) (avg)</td>
237
+ <td>69.4</td>
238
+ <td>58.9</td>
239
+ <td><b>74.7</b></td>
240
+ </tr>
241
+ <tr>
242
+ <td>Multipl-E (0-shot) (avg)</td>
243
+ <td>-</td>
244
+ <td>34.5</td>
245
+ <td><b>45.8</b></td>
246
+ </tr>
247
+ </tbody>
248
+ </table>
249
+
250
+ ## Useful links
251
+ - View our [release blogpost](https://huggingface.co/blog/falcon3).
252
+ - Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
253
+
254
+ ## Technical Report
255
+
256
+ Coming soon....
257
+
258
+ ## Citation
259
+ If Falcon3 family were helpful in your work, feel free to give us a cite.
260
+
261
+ ```
262
+ @misc{Falcon3,
263
+ title = {The Falcon 3 family of Open Models},
264
+ author = {TII Team},
265
+ month = {December},
266
+ year = {2024}
267
+ }
268
+ ```
269
+