--- language: rw datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large Kinyarwanda by Lucio results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice rw type: common_voice args: rw metrics: - name: Test WER type: wer value: 47.99 --- # Wav2Vec2-Large-XLSR-53-rw Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53) on Kinyarwanda using the [Common Voice](https://huggingface.co./datasets/common_voice) dataset, using the validation set for training, and taking 12% of the test data for validation. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # WARNING! This will download and extract to use about 80GB on disk. test_dataset = load_dataset("common_voice", "rw", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-kinyarwanda") model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-kinyarwanda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Kinyarwanda test data of Common Voice. Note that to even load the test data, the whole 40GB Kinyarwanda dataset will be downloaded and extracted into another 40GB directory, so you will need that space available on disk (e.g. not possible in the free tier of Google Colab). This script uses the `chunked_wer` function from [pcuenq](https://huggingface.co./pcuenq/wav2vec2-large-xlsr-53-es). ```python import jiwer import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rw", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-kinyarwanda") model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-kinyarwanda") model.to("cuda") chars_to_ignore_regex = '[\\[\\],?.!;:%\\'"‘’“”(){}‟ˮ´ʺ″«»/…‽�–-]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn, remove_columns=['path']) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000))) ``` **Test Result**: 47.99 % ## Training The Common Voice `validation` dataset was used for training, with 12% of the test dataset used for validation, trained on 1 V100 GPU for 48 hours (20 epochs). The script used for training was just the `run_finetuning.py` script provided in OVHcloud's `databuzzword/hf-wav2vec` image.