lucasdellabella commited on
Commit
a78c763
1 Parent(s): b4c6f3a

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +154 -0
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ base_model: "stabilityai/stable-diffusion-xl-base-1.0"
4
+ tags:
5
+ - sdxl
6
+ - sdxl-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - not-for-all-audiences
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+
16
+ ---
17
+
18
+ # simpletuner-lora
19
+
20
+ This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).
21
+
22
+
23
+ The main validation prompt used during training was:
24
+
25
+
26
+
27
+ ```
28
+ a girl eating a sandwich, black hair
29
+ ```
30
+
31
+ ## Validation settings
32
+ - CFG: `4.2`
33
+ - CFG Rescale: `0.0`
34
+ - Steps: `20`
35
+ - Sampler: `None`
36
+ - Seed: `42`
37
+ - Resolution: `1024x1024`
38
+
39
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
40
+
41
+
42
+
43
+
44
+ <Gallery />
45
+
46
+ The text encoder **was not** trained.
47
+ You may reuse the base model text encoder for inference.
48
+
49
+
50
+ ## Training settings
51
+
52
+ - Training epochs: 1
53
+ - Training steps: 150
54
+ - Learning rate: 0.0001
55
+ - Effective batch size: 16
56
+ - Micro-batch size: 16
57
+ - Gradient accumulation steps: 1
58
+ - Number of GPUs: 1
59
+ - Prediction type: epsilon
60
+ - Rescaled betas zero SNR: False
61
+ - Optimizer: adamw_bf16
62
+ - Precision: Pure BF16
63
+ - Quantised: Yes: int8-quanto
64
+ - Xformers: Not used
65
+ - LyCORIS Config:
66
+ ```json
67
+ {
68
+ "algo": "lora",
69
+ "multiplier": 1.0,
70
+ "linear_dim": 64,
71
+ "linear_alpha": 32,
72
+ "apply_preset": {
73
+ "target_module": [
74
+ "Attention",
75
+ "FeedForward"
76
+ ],
77
+ "module_algo_map": {
78
+ "Attention": {
79
+ "factor": 16
80
+ },
81
+ "FeedForward": {
82
+ "factor": 8
83
+ }
84
+ }
85
+ }
86
+ }
87
+ ```
88
+
89
+ ## Datasets
90
+
91
+ ### test-dataset-512
92
+ - Repeats: 10
93
+ - Total number of images: 26
94
+ - Total number of aspect buckets: 1
95
+ - Resolution: 0.262144 megapixels
96
+ - Cropped: False
97
+ - Crop style: None
98
+ - Crop aspect: None
99
+ ### test-dataset-1024
100
+ - Repeats: 10
101
+ - Total number of images: 26
102
+ - Total number of aspect buckets: 1
103
+ - Resolution: 1.048576 megapixels
104
+ - Cropped: False
105
+ - Crop style: None
106
+ - Crop aspect: None
107
+ ### test-dataset-512-crop
108
+ - Repeats: 10
109
+ - Total number of images: 26
110
+ - Total number of aspect buckets: 1
111
+ - Resolution: 0.262144 megapixels
112
+ - Cropped: True
113
+ - Crop style: random
114
+ - Crop aspect: square
115
+ ### test-dataset-1024-crop
116
+ - Repeats: 10
117
+ - Total number of images: 26
118
+ - Total number of aspect buckets: 1
119
+ - Resolution: 1.048576 megapixels
120
+ - Cropped: True
121
+ - Crop style: random
122
+ - Crop aspect: square
123
+
124
+
125
+ ## Inference
126
+
127
+
128
+ ```python
129
+ import torch
130
+ from diffusers import DiffusionPipeline
131
+ from lycoris import create_lycoris_from_weights
132
+
133
+ model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
134
+ adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
135
+ lora_scale = 1.0
136
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
137
+ wrapper.merge_to()
138
+
139
+ prompt = "a girl eating a sandwich, black hair"
140
+ negative_prompt = 'blurry, cropped, ugly'
141
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
142
+ image = pipeline(
143
+ prompt=prompt,
144
+ negative_prompt=negative_prompt,
145
+ num_inference_steps=20,
146
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
147
+ width=1024,
148
+ height=1024,
149
+ guidance_scale=4.2,
150
+ guidance_rescale=0.0,
151
+ ).images[0]
152
+ image.save("output.png", format="PNG")
153
+ ```
154
+