--- language: - 'no' - nb - nn inference: false tags: - T5 - NorT5 - Norwegian - encoder-decoder license: apache-2.0 pipeline_tag: text2text-generation --- # NorT5 base The official release of a new generation of NorT5 language models described in paper [**NorBench — A Benchmark for Norwegian Language Models**](https://arxiv.org/abs/2305.03880). Plese read the paper to learn more details about the model. ## Other sizes: - [NorT5 xs (32M)](https://huggingface.co./ltg/nort5-xs) - [NorT5 small (88M)](https://huggingface.co./ltg/nort5-small) - [NorT5 base (228M)](https://huggingface.co./ltg/nort5-base) - [NorT5 large (808M)](https://huggingface.co./ltg/nort5-large) ## Encoder-only NorBERT siblings: - [NorBERT 3 xs (15M)](https://huggingface.co./ltg/norbert3-xs) - [NorBERT 3 small (40M)](https://huggingface.co./ltg/norbert3-small) - [NorBERT 3 base (123M)](https://huggingface.co./ltg/norbert3-base) - [NorBERT 3 large (323M)](https://huggingface.co./ltg/norbert3-large) ## Example usage This model currently needs a custom wrapper from `modeling_nort5.py`, you should therefore load the model with `trust_remote_code=True`. ```python import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("ltg/nort5-base", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ltg/nort5-base", trust_remote_code=True) # MASKED LANGUAGE MODELING sentence = "Brukseksempel: Elektrisk oppvarming. Definisjonen på ordet oppvarming er: å[MASK_0]." encoding = tokenizer(sentence) input_tensor = torch.tensor([encoding.input_ids]) output_tensor = model.generate(input_tensor, decoder_start_token_id=7, eos_token_id=8) tokenizer.decode(output_tensor.squeeze(), skip_special_tokens=True) # should output: ' varme opp et rom.' # PREFIX LANGUAGE MODELING # you need to finetune this model or use `nort5-{size}-lm` model, which is finetuned on prefix language modeling sentence = "Brukseksempel: Elektrisk oppvarming. Definisjonen på ordet oppvarming er (Wikipedia) " encoding = tokenizer(sentence) input_tensor = torch.tensor([encoding.input_ids]) output_tensor = model.generate(input_tensor, max_new_tokens=50, num_beams=4, do_sample=False) tokenizer.decode(output_tensor.squeeze()) # should output: [BOS]ˈoppvarming, det vil si at det skjer en endring i temperaturen i et medium, f.eks. en ovn eller en radiator, slik at den blir varmere eller kaldere, eller at den blir varmere eller kaldere, eller at den blir ``` The following classes are currently implemented: `AutoModel`, `AutoModelForSeq2SeqLM`. ## Cite us ```bibtex @inproceedings{samuel-etal-2023-norbench, title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models", author = "Samuel, David and Kutuzov, Andrey and Touileb, Samia and Velldal, Erik and {\O}vrelid, Lilja and R{\o}nningstad, Egil and Sigdel, Elina and Palatkina, Anna", booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)", month = may, year = "2023", address = "T{\'o}rshavn, Faroe Islands", publisher = "University of Tartu Library", url = "https://aclanthology.org/2023.nodalida-1.61", pages = "618--633", abstract = "We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench.", } ```