File size: 1,738 Bytes
9676487 128e8ed 9676487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: togethercomputer/evo-1-8k-base
model-index:
- name: lora_evo_ta_all_layers_4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora_evo_ta_all_layers_4
This model is a fine-tuned version of [togethercomputer/evo-1-8k-base](https://huggingface.co./togethercomputer/evo-1-8k-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2625
## Model description
lora_alpha = 32
lora_dropout = 0.05
lora_r = 16
epochs = 3
learning rate = 3e-3 <--------- (10x larger)
warmup_steps=0.5
gradient_accumulation_steps = 8
train_batch = 1
eval_batch = 1
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.5
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.472 | 0.9925 | 33 | 3.2926 |
| 3.3114 | 1.9850 | 66 | 3.2669 |
| 3.2254 | 2.9774 | 99 | 3.2625 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |