|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code contains the spectrogram and Hybrid version of Demucs. |
|
""" |
|
from copy import deepcopy |
|
import math |
|
import typing as tp |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from .filtering import wiener |
|
from .demucs import DConv, rescale_module |
|
from .states import capture_init |
|
from .spec import spectro, ispectro |
|
|
|
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.): |
|
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input. |
|
If this is the case, we insert extra 0 padding to the right before the reflection happen.""" |
|
x0 = x |
|
length = x.shape[-1] |
|
padding_left, padding_right = paddings |
|
if mode == 'reflect': |
|
max_pad = max(padding_left, padding_right) |
|
if length <= max_pad: |
|
extra_pad = max_pad - length + 1 |
|
extra_pad_right = min(padding_right, extra_pad) |
|
extra_pad_left = extra_pad - extra_pad_right |
|
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right) |
|
x = F.pad(x, (extra_pad_left, extra_pad_right)) |
|
out = F.pad(x, paddings, mode, value) |
|
assert out.shape[-1] == length + padding_left + padding_right |
|
assert (out[..., padding_left: padding_left + length] == x0).all() |
|
return out |
|
|
|
class ScaledEmbedding(nn.Module): |
|
""" |
|
Boost learning rate for embeddings (with `scale`). |
|
Also, can make embeddings continuous with `smooth`. |
|
""" |
|
def __init__(self, num_embeddings: int, embedding_dim: int, |
|
scale: float = 10., smooth=False): |
|
super().__init__() |
|
self.embedding = nn.Embedding(num_embeddings, embedding_dim) |
|
if smooth: |
|
weight = torch.cumsum(self.embedding.weight.data, dim=0) |
|
|
|
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None] |
|
self.embedding.weight.data[:] = weight |
|
self.embedding.weight.data /= scale |
|
self.scale = scale |
|
|
|
@property |
|
def weight(self): |
|
return self.embedding.weight * self.scale |
|
|
|
def forward(self, x): |
|
out = self.embedding(x) * self.scale |
|
return out |
|
|
|
|
|
class HEncLayer(nn.Module): |
|
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False, |
|
freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True, |
|
rewrite=True): |
|
"""Encoder layer. This used both by the time and the frequency branch. |
|
|
|
Args: |
|
chin: number of input channels. |
|
chout: number of output channels. |
|
norm_groups: number of groups for group norm. |
|
empty: used to make a layer with just the first conv. this is used |
|
before merging the time and freq. branches. |
|
freq: this is acting on frequencies. |
|
dconv: insert DConv residual branches. |
|
norm: use GroupNorm. |
|
context: context size for the 1x1 conv. |
|
dconv_kw: list of kwargs for the DConv class. |
|
pad: pad the input. Padding is done so that the output size is |
|
always the input size / stride. |
|
rewrite: add 1x1 conv at the end of the layer. |
|
""" |
|
super().__init__() |
|
norm_fn = lambda d: nn.Identity() |
|
if norm: |
|
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) |
|
if pad: |
|
pad = kernel_size // 4 |
|
else: |
|
pad = 0 |
|
klass = nn.Conv1d |
|
self.freq = freq |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.empty = empty |
|
self.norm = norm |
|
self.pad = pad |
|
if freq: |
|
kernel_size = [kernel_size, 1] |
|
stride = [stride, 1] |
|
pad = [pad, 0] |
|
klass = nn.Conv2d |
|
self.conv = klass(chin, chout, kernel_size, stride, pad) |
|
if self.empty: |
|
return |
|
self.norm1 = norm_fn(chout) |
|
self.rewrite = None |
|
if rewrite: |
|
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context) |
|
self.norm2 = norm_fn(2 * chout) |
|
|
|
self.dconv = None |
|
if dconv: |
|
self.dconv = DConv(chout, **dconv_kw) |
|
|
|
def forward(self, x, inject=None): |
|
""" |
|
`inject` is used to inject the result from the time branch into the frequency branch, |
|
when both have the same stride. |
|
""" |
|
if not self.freq and x.dim() == 4: |
|
B, C, Fr, T = x.shape |
|
x = x.view(B, -1, T) |
|
|
|
if not self.freq: |
|
le = x.shape[-1] |
|
if not le % self.stride == 0: |
|
x = F.pad(x, (0, self.stride - (le % self.stride))) |
|
y = self.conv(x) |
|
if self.empty: |
|
return y |
|
if inject is not None: |
|
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape) |
|
if inject.dim() == 3 and y.dim() == 4: |
|
inject = inject[:, :, None] |
|
y = y + inject |
|
y = F.gelu(self.norm1(y)) |
|
if self.dconv: |
|
if self.freq: |
|
B, C, Fr, T = y.shape |
|
y = y.permute(0, 2, 1, 3).reshape(-1, C, T) |
|
y = self.dconv(y) |
|
if self.freq: |
|
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3) |
|
if self.rewrite: |
|
z = self.norm2(self.rewrite(y)) |
|
z = F.glu(z, dim=1) |
|
else: |
|
z = y |
|
return z |
|
|
|
|
|
class MultiWrap(nn.Module): |
|
""" |
|
Takes one layer and replicate it N times. each replica will act |
|
on a frequency band. All is done so that if the N replica have the same weights, |
|
then this is exactly equivalent to applying the original module on all frequencies. |
|
|
|
This is a bit over-engineered to avoid edge artifacts when splitting |
|
the frequency bands, but it is possible the naive implementation would work as well... |
|
""" |
|
def __init__(self, layer, split_ratios): |
|
""" |
|
Args: |
|
layer: module to clone, must be either HEncLayer or HDecLayer. |
|
split_ratios: list of float indicating which ratio to keep for each band. |
|
""" |
|
super().__init__() |
|
self.split_ratios = split_ratios |
|
self.layers = nn.ModuleList() |
|
self.conv = isinstance(layer, HEncLayer) |
|
assert not layer.norm |
|
assert layer.freq |
|
assert layer.pad |
|
if not self.conv: |
|
assert not layer.context_freq |
|
for k in range(len(split_ratios) + 1): |
|
lay = deepcopy(layer) |
|
if self.conv: |
|
lay.conv.padding = (0, 0) |
|
else: |
|
lay.pad = False |
|
for m in lay.modules(): |
|
if hasattr(m, 'reset_parameters'): |
|
m.reset_parameters() |
|
self.layers.append(lay) |
|
|
|
def forward(self, x, skip=None, length=None): |
|
B, C, Fr, T = x.shape |
|
|
|
ratios = list(self.split_ratios) + [1] |
|
start = 0 |
|
outs = [] |
|
for ratio, layer in zip(ratios, self.layers): |
|
if self.conv: |
|
pad = layer.kernel_size // 4 |
|
if ratio == 1: |
|
limit = Fr |
|
frames = -1 |
|
else: |
|
limit = int(round(Fr * ratio)) |
|
le = limit - start |
|
if start == 0: |
|
le += pad |
|
frames = round((le - layer.kernel_size) / layer.stride + 1) |
|
limit = start + (frames - 1) * layer.stride + layer.kernel_size |
|
if start == 0: |
|
limit -= pad |
|
assert limit - start > 0, (limit, start) |
|
assert limit <= Fr, (limit, Fr) |
|
y = x[:, :, start:limit, :] |
|
if start == 0: |
|
y = F.pad(y, (0, 0, pad, 0)) |
|
if ratio == 1: |
|
y = F.pad(y, (0, 0, 0, pad)) |
|
outs.append(layer(y)) |
|
start = limit - layer.kernel_size + layer.stride |
|
else: |
|
if ratio == 1: |
|
limit = Fr |
|
else: |
|
limit = int(round(Fr * ratio)) |
|
last = layer.last |
|
layer.last = True |
|
|
|
y = x[:, :, start:limit] |
|
s = skip[:, :, start:limit] |
|
out, _ = layer(y, s, None) |
|
if outs: |
|
outs[-1][:, :, -layer.stride:] += ( |
|
out[:, :, :layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1)) |
|
out = out[:, :, layer.stride:] |
|
if ratio == 1: |
|
out = out[:, :, :-layer.stride // 2, :] |
|
if start == 0: |
|
out = out[:, :, layer.stride // 2:, :] |
|
outs.append(out) |
|
layer.last = last |
|
start = limit |
|
out = torch.cat(outs, dim=2) |
|
if not self.conv and not last: |
|
out = F.gelu(out) |
|
if self.conv: |
|
return out |
|
else: |
|
return out, None |
|
|
|
|
|
class HDecLayer(nn.Module): |
|
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False, |
|
freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True, |
|
context_freq=True, rewrite=True): |
|
""" |
|
Same as HEncLayer but for decoder. See `HEncLayer` for documentation. |
|
""" |
|
super().__init__() |
|
norm_fn = lambda d: nn.Identity() |
|
if norm: |
|
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) |
|
if pad: |
|
pad = kernel_size // 4 |
|
else: |
|
pad = 0 |
|
self.pad = pad |
|
self.last = last |
|
self.freq = freq |
|
self.chin = chin |
|
self.empty = empty |
|
self.stride = stride |
|
self.kernel_size = kernel_size |
|
self.norm = norm |
|
self.context_freq = context_freq |
|
klass = nn.Conv1d |
|
klass_tr = nn.ConvTranspose1d |
|
if freq: |
|
kernel_size = [kernel_size, 1] |
|
stride = [stride, 1] |
|
klass = nn.Conv2d |
|
klass_tr = nn.ConvTranspose2d |
|
self.conv_tr = klass_tr(chin, chout, kernel_size, stride) |
|
self.norm2 = norm_fn(chout) |
|
if self.empty: |
|
return |
|
self.rewrite = None |
|
if rewrite: |
|
if context_freq: |
|
self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context) |
|
else: |
|
self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1, |
|
[0, context]) |
|
self.norm1 = norm_fn(2 * chin) |
|
|
|
self.dconv = None |
|
if dconv: |
|
self.dconv = DConv(chin, **dconv_kw) |
|
|
|
def forward(self, x, skip, length): |
|
if self.freq and x.dim() == 3: |
|
B, C, T = x.shape |
|
x = x.view(B, self.chin, -1, T) |
|
|
|
if not self.empty: |
|
x = x + skip |
|
|
|
if self.rewrite: |
|
y = F.glu(self.norm1(self.rewrite(x)), dim=1) |
|
else: |
|
y = x |
|
if self.dconv: |
|
if self.freq: |
|
B, C, Fr, T = y.shape |
|
y = y.permute(0, 2, 1, 3).reshape(-1, C, T) |
|
y = self.dconv(y) |
|
if self.freq: |
|
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3) |
|
else: |
|
y = x |
|
assert skip is None |
|
z = self.norm2(self.conv_tr(y)) |
|
if self.freq: |
|
if self.pad: |
|
z = z[..., self.pad:-self.pad, :] |
|
else: |
|
z = z[..., self.pad:self.pad + length] |
|
assert z.shape[-1] == length, (z.shape[-1], length) |
|
if not self.last: |
|
z = F.gelu(z) |
|
return z, y |
|
|
|
|
|
class HDemucs(nn.Module): |
|
""" |
|
Spectrogram and hybrid Demucs model. |
|
The spectrogram model has the same structure as Demucs, except the first few layers are over the |
|
frequency axis, until there is only 1 frequency, and then it moves to time convolutions. |
|
Frequency layers can still access information across time steps thanks to the DConv residual. |
|
|
|
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride |
|
as the frequency branch and then the two are combined. The opposite happens in the decoder. |
|
|
|
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]), |
|
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on |
|
Open Unmix implementation [Stoter et al. 2019]. |
|
|
|
The loss is always on the temporal domain, by backpropagating through the above |
|
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks |
|
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram |
|
contribution, without changing the one from the waveform, which will lead to worse performance. |
|
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve. |
|
CaC on the other hand provides similar performance for hybrid, and works naturally with |
|
hybrid models. |
|
|
|
This model also uses frequency embeddings are used to improve efficiency on convolutions |
|
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf). |
|
|
|
Unlike classic Demucs, there is no resampling here, and normalization is always applied. |
|
""" |
|
@capture_init |
|
def __init__(self, |
|
sources, |
|
|
|
audio_channels=2, |
|
channels=48, |
|
channels_time=None, |
|
growth=2, |
|
|
|
nfft=4096, |
|
wiener_iters=0, |
|
end_iters=0, |
|
wiener_residual=False, |
|
cac=True, |
|
|
|
depth=6, |
|
rewrite=True, |
|
hybrid=True, |
|
hybrid_old=False, |
|
|
|
multi_freqs=None, |
|
multi_freqs_depth=2, |
|
freq_emb=0.2, |
|
emb_scale=10, |
|
emb_smooth=True, |
|
|
|
kernel_size=8, |
|
time_stride=2, |
|
stride=4, |
|
context=1, |
|
context_enc=0, |
|
|
|
norm_starts=4, |
|
norm_groups=4, |
|
|
|
dconv_mode=1, |
|
dconv_depth=2, |
|
dconv_comp=4, |
|
dconv_attn=4, |
|
dconv_lstm=4, |
|
dconv_init=1e-4, |
|
|
|
rescale=0.1, |
|
|
|
samplerate=44100, |
|
segment=4 * 10): |
|
|
|
""" |
|
Args: |
|
sources (list[str]): list of source names. |
|
audio_channels (int): input/output audio channels. |
|
channels (int): initial number of hidden channels. |
|
channels_time: if not None, use a different `channels` value for the time branch. |
|
growth: increase the number of hidden channels by this factor at each layer. |
|
nfft: number of fft bins. Note that changing this require careful computation of |
|
various shape parameters and will not work out of the box for hybrid models. |
|
wiener_iters: when using Wiener filtering, number of iterations at test time. |
|
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`. |
|
wiener_residual: add residual source before wiener filtering. |
|
cac: uses complex as channels, i.e. complex numbers are 2 channels each |
|
in input and output. no further processing is done before ISTFT. |
|
depth (int): number of layers in the encoder and in the decoder. |
|
rewrite (bool): add 1x1 convolution to each layer. |
|
hybrid (bool): make a hybrid time/frequency domain, otherwise frequency only. |
|
hybrid_old: some models trained for MDX had a padding bug. This replicates |
|
this bug to avoid retraining them. |
|
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`. |
|
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost |
|
layers will be wrapped. |
|
freq_emb: add frequency embedding after the first frequency layer if > 0, |
|
the actual value controls the weight of the embedding. |
|
emb_scale: equivalent to scaling the embedding learning rate |
|
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies). |
|
kernel_size: kernel_size for encoder and decoder layers. |
|
stride: stride for encoder and decoder layers. |
|
time_stride: stride for the final time layer, after the merge. |
|
context: context for 1x1 conv in the decoder. |
|
context_enc: context for 1x1 conv in the encoder. |
|
norm_starts: layer at which group norm starts being used. |
|
decoder layers are numbered in reverse order. |
|
norm_groups: number of groups for group norm. |
|
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both. |
|
dconv_depth: depth of residual DConv branch. |
|
dconv_comp: compression of DConv branch. |
|
dconv_attn: adds attention layers in DConv branch starting at this layer. |
|
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer. |
|
dconv_init: initial scale for the DConv branch LayerScale. |
|
rescale: weight recaling trick |
|
|
|
""" |
|
super().__init__() |
|
|
|
self.cac = cac |
|
self.wiener_residual = wiener_residual |
|
self.audio_channels = audio_channels |
|
self.sources = sources |
|
self.kernel_size = kernel_size |
|
self.context = context |
|
self.stride = stride |
|
self.depth = depth |
|
self.channels = channels |
|
self.samplerate = samplerate |
|
self.segment = segment |
|
|
|
self.nfft = nfft |
|
self.hop_length = nfft // 4 |
|
self.wiener_iters = wiener_iters |
|
self.end_iters = end_iters |
|
self.freq_emb = None |
|
self.hybrid = hybrid |
|
self.hybrid_old = hybrid_old |
|
if hybrid_old: |
|
assert hybrid, "hybrid_old must come with hybrid=True" |
|
if hybrid: |
|
assert wiener_iters == end_iters |
|
|
|
self.encoder = nn.ModuleList() |
|
self.decoder = nn.ModuleList() |
|
|
|
if hybrid: |
|
self.tencoder = nn.ModuleList() |
|
self.tdecoder = nn.ModuleList() |
|
|
|
chin = audio_channels |
|
chin_z = chin |
|
if self.cac: |
|
chin_z *= 2 |
|
chout = channels_time or channels |
|
chout_z = channels |
|
freqs = nfft // 2 |
|
|
|
for index in range(depth): |
|
lstm = index >= dconv_lstm |
|
attn = index >= dconv_attn |
|
norm = index >= norm_starts |
|
freq = freqs > 1 |
|
stri = stride |
|
ker = kernel_size |
|
if not freq: |
|
assert freqs == 1 |
|
ker = time_stride * 2 |
|
stri = time_stride |
|
|
|
pad = True |
|
last_freq = False |
|
if freq and freqs <= kernel_size: |
|
ker = freqs |
|
pad = False |
|
last_freq = True |
|
|
|
kw = { |
|
'kernel_size': ker, |
|
'stride': stri, |
|
'freq': freq, |
|
'pad': pad, |
|
'norm': norm, |
|
'rewrite': rewrite, |
|
'norm_groups': norm_groups, |
|
'dconv_kw': { |
|
'lstm': lstm, |
|
'attn': attn, |
|
'depth': dconv_depth, |
|
'compress': dconv_comp, |
|
'init': dconv_init, |
|
'gelu': True, |
|
} |
|
} |
|
kwt = dict(kw) |
|
kwt['freq'] = 0 |
|
kwt['kernel_size'] = kernel_size |
|
kwt['stride'] = stride |
|
kwt['pad'] = True |
|
kw_dec = dict(kw) |
|
multi = False |
|
if multi_freqs and index < multi_freqs_depth: |
|
multi = True |
|
kw_dec['context_freq'] = False |
|
|
|
if last_freq: |
|
chout_z = max(chout, chout_z) |
|
chout = chout_z |
|
|
|
enc = HEncLayer(chin_z, chout_z, |
|
dconv=dconv_mode & 1, context=context_enc, **kw) |
|
if hybrid and freq: |
|
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc, |
|
empty=last_freq, **kwt) |
|
self.tencoder.append(tenc) |
|
|
|
if multi: |
|
enc = MultiWrap(enc, multi_freqs) |
|
self.encoder.append(enc) |
|
if index == 0: |
|
chin = self.audio_channels * len(self.sources) |
|
chin_z = chin |
|
if self.cac: |
|
chin_z *= 2 |
|
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2, |
|
last=index == 0, context=context, **kw_dec) |
|
if multi: |
|
dec = MultiWrap(dec, multi_freqs) |
|
if hybrid and freq: |
|
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq, |
|
last=index == 0, context=context, **kwt) |
|
self.tdecoder.insert(0, tdec) |
|
self.decoder.insert(0, dec) |
|
|
|
chin = chout |
|
chin_z = chout_z |
|
chout = int(growth * chout) |
|
chout_z = int(growth * chout_z) |
|
if freq: |
|
if freqs <= kernel_size: |
|
freqs = 1 |
|
else: |
|
freqs //= stride |
|
if index == 0 and freq_emb: |
|
self.freq_emb = ScaledEmbedding( |
|
freqs, chin_z, smooth=emb_smooth, scale=emb_scale) |
|
self.freq_emb_scale = freq_emb |
|
|
|
if rescale: |
|
rescale_module(self, reference=rescale) |
|
|
|
def _spec(self, x): |
|
hl = self.hop_length |
|
nfft = self.nfft |
|
x0 = x |
|
|
|
if self.hybrid: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert hl == nfft // 4 |
|
le = int(math.ceil(x.shape[-1] / hl)) |
|
pad = hl // 2 * 3 |
|
if not self.hybrid_old: |
|
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode='reflect') |
|
else: |
|
x = pad1d(x, (pad, pad + le * hl - x.shape[-1])) |
|
|
|
z = spectro(x, nfft, hl)[..., :-1, :] |
|
if self.hybrid: |
|
assert z.shape[-1] == le + 4, (z.shape, x.shape, le) |
|
z = z[..., 2:2+le] |
|
return z |
|
|
|
def _ispec(self, z, length=None, scale=0): |
|
hl = self.hop_length // (4 ** scale) |
|
z = F.pad(z, (0, 0, 0, 1)) |
|
if self.hybrid: |
|
z = F.pad(z, (2, 2)) |
|
pad = hl // 2 * 3 |
|
if not self.hybrid_old: |
|
le = hl * int(math.ceil(length / hl)) + 2 * pad |
|
else: |
|
le = hl * int(math.ceil(length / hl)) |
|
x = ispectro(z, hl, length=le) |
|
if not self.hybrid_old: |
|
x = x[..., pad:pad + length] |
|
else: |
|
x = x[..., :length] |
|
else: |
|
x = ispectro(z, hl, length) |
|
return x |
|
|
|
def _magnitude(self, z): |
|
|
|
|
|
if self.cac: |
|
B, C, Fr, T = z.shape |
|
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3) |
|
m = m.reshape(B, C * 2, Fr, T) |
|
else: |
|
m = z.abs() |
|
return m |
|
|
|
def _mask(self, z, m): |
|
|
|
|
|
niters = self.wiener_iters |
|
if self.cac: |
|
B, S, C, Fr, T = m.shape |
|
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3) |
|
out = torch.view_as_complex(out.contiguous()) |
|
return out |
|
if self.training: |
|
niters = self.end_iters |
|
if niters < 0: |
|
z = z[:, None] |
|
return z / (1e-8 + z.abs()) * m |
|
else: |
|
return self._wiener(m, z, niters) |
|
|
|
def _wiener(self, mag_out, mix_stft, niters): |
|
|
|
init = mix_stft.dtype |
|
wiener_win_len = 300 |
|
residual = self.wiener_residual |
|
|
|
B, S, C, Fq, T = mag_out.shape |
|
mag_out = mag_out.permute(0, 4, 3, 2, 1) |
|
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1)) |
|
|
|
outs = [] |
|
for sample in range(B): |
|
pos = 0 |
|
out = [] |
|
for pos in range(0, T, wiener_win_len): |
|
frame = slice(pos, pos + wiener_win_len) |
|
z_out = wiener( |
|
mag_out[sample, frame], mix_stft[sample, frame], niters, |
|
residual=residual) |
|
out.append(z_out.transpose(-1, -2)) |
|
outs.append(torch.cat(out, dim=0)) |
|
out = torch.view_as_complex(torch.stack(outs, 0)) |
|
out = out.permute(0, 4, 3, 2, 1).contiguous() |
|
if residual: |
|
out = out[:, :-1] |
|
assert list(out.shape) == [B, S, C, Fq, T] |
|
return out.to(init) |
|
|
|
def forward(self, mix): |
|
x = mix |
|
length = x.shape[-1] |
|
|
|
z = self._spec(mix) |
|
mag = self._magnitude(z).to(mix.device) |
|
x = mag |
|
|
|
B, C, Fq, T = x.shape |
|
|
|
|
|
mean = x.mean(dim=(1, 2, 3), keepdim=True) |
|
std = x.std(dim=(1, 2, 3), keepdim=True) |
|
x = (x - mean) / (1e-5 + std) |
|
|
|
|
|
if self.hybrid: |
|
|
|
xt = mix |
|
meant = xt.mean(dim=(1, 2), keepdim=True) |
|
stdt = xt.std(dim=(1, 2), keepdim=True) |
|
xt = (xt - meant) / (1e-5 + stdt) |
|
|
|
|
|
saved = [] |
|
saved_t = [] |
|
lengths = [] |
|
lengths_t = [] |
|
for idx, encode in enumerate(self.encoder): |
|
lengths.append(x.shape[-1]) |
|
inject = None |
|
if self.hybrid and idx < len(self.tencoder): |
|
|
|
lengths_t.append(xt.shape[-1]) |
|
tenc = self.tencoder[idx] |
|
xt = tenc(xt) |
|
if not tenc.empty: |
|
|
|
saved_t.append(xt) |
|
else: |
|
|
|
|
|
inject = xt |
|
x = encode(x, inject) |
|
if idx == 0 and self.freq_emb is not None: |
|
|
|
|
|
frs = torch.arange(x.shape[-2], device=x.device) |
|
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x) |
|
x = x + self.freq_emb_scale * emb |
|
|
|
saved.append(x) |
|
|
|
x = torch.zeros_like(x) |
|
if self.hybrid: |
|
xt = torch.zeros_like(x) |
|
|
|
|
|
for idx, decode in enumerate(self.decoder): |
|
skip = saved.pop(-1) |
|
x, pre = decode(x, skip, lengths.pop(-1)) |
|
|
|
|
|
|
|
if self.hybrid: |
|
offset = self.depth - len(self.tdecoder) |
|
if self.hybrid and idx >= offset: |
|
tdec = self.tdecoder[idx - offset] |
|
length_t = lengths_t.pop(-1) |
|
if tdec.empty: |
|
assert pre.shape[2] == 1, pre.shape |
|
pre = pre[:, :, 0] |
|
xt, _ = tdec(pre, None, length_t) |
|
else: |
|
skip = saved_t.pop(-1) |
|
xt, _ = tdec(xt, skip, length_t) |
|
|
|
|
|
assert len(saved) == 0 |
|
assert len(lengths_t) == 0 |
|
assert len(saved_t) == 0 |
|
|
|
S = len(self.sources) |
|
x = x.view(B, S, -1, Fq, T) |
|
x = x * std[:, None] + mean[:, None] |
|
|
|
|
|
|
|
|
|
|
|
|
|
device_type = x.device.type |
|
device_load = f"{device_type}:{x.device.index}" if not device_type == 'mps' else device_type |
|
x_is_other_gpu = not device_type in ["cuda", "cpu"] |
|
|
|
if x_is_other_gpu: |
|
x = x.cpu() |
|
|
|
zout = self._mask(z, x) |
|
x = self._ispec(zout, length) |
|
|
|
|
|
if x_is_other_gpu: |
|
x = x.to(device_load) |
|
|
|
if self.hybrid: |
|
xt = xt.view(B, S, -1, length) |
|
xt = xt * stdt[:, None] + meant[:, None] |
|
x = xt + x |
|
return x |