|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import typing as tp |
|
|
|
import julius |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from .states import capture_init |
|
from .utils import center_trim, unfold |
|
|
|
|
|
class BLSTM(nn.Module): |
|
""" |
|
BiLSTM with same hidden units as input dim. |
|
If `max_steps` is not None, input will be splitting in overlapping |
|
chunks and the LSTM applied separately on each chunk. |
|
""" |
|
def __init__(self, dim, layers=1, max_steps=None, skip=False): |
|
super().__init__() |
|
assert max_steps is None or max_steps % 4 == 0 |
|
self.max_steps = max_steps |
|
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim) |
|
self.linear = nn.Linear(2 * dim, dim) |
|
self.skip = skip |
|
|
|
def forward(self, x): |
|
B, C, T = x.shape |
|
y = x |
|
framed = False |
|
if self.max_steps is not None and T > self.max_steps: |
|
width = self.max_steps |
|
stride = width // 2 |
|
frames = unfold(x, width, stride) |
|
nframes = frames.shape[2] |
|
framed = True |
|
x = frames.permute(0, 2, 1, 3).reshape(-1, C, width) |
|
|
|
x = x.permute(2, 0, 1) |
|
|
|
x = self.lstm(x)[0] |
|
x = self.linear(x) |
|
x = x.permute(1, 2, 0) |
|
if framed: |
|
out = [] |
|
frames = x.reshape(B, -1, C, width) |
|
limit = stride // 2 |
|
for k in range(nframes): |
|
if k == 0: |
|
out.append(frames[:, k, :, :-limit]) |
|
elif k == nframes - 1: |
|
out.append(frames[:, k, :, limit:]) |
|
else: |
|
out.append(frames[:, k, :, limit:-limit]) |
|
out = torch.cat(out, -1) |
|
out = out[..., :T] |
|
x = out |
|
if self.skip: |
|
x = x + y |
|
return x |
|
|
|
|
|
def rescale_conv(conv, reference): |
|
"""Rescale initial weight scale. It is unclear why it helps but it certainly does. |
|
""" |
|
std = conv.weight.std().detach() |
|
scale = (std / reference)**0.5 |
|
conv.weight.data /= scale |
|
if conv.bias is not None: |
|
conv.bias.data /= scale |
|
|
|
|
|
def rescale_module(module, reference): |
|
for sub in module.modules(): |
|
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d, nn.Conv2d, nn.ConvTranspose2d)): |
|
rescale_conv(sub, reference) |
|
|
|
|
|
class LayerScale(nn.Module): |
|
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf). |
|
This rescales diagonaly residual outputs close to 0 initially, then learnt. |
|
""" |
|
def __init__(self, channels: int, init: float = 0): |
|
super().__init__() |
|
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True)) |
|
self.scale.data[:] = init |
|
|
|
def forward(self, x): |
|
return self.scale[:, None] * x |
|
|
|
|
|
class DConv(nn.Module): |
|
""" |
|
New residual branches in each encoder layer. |
|
This alternates dilated convolutions, potentially with LSTMs and attention. |
|
Also before entering each residual branch, dimension is projected on a smaller subspace, |
|
e.g. of dim `channels // compress`. |
|
""" |
|
def __init__(self, channels: int, compress: float = 4, depth: int = 2, init: float = 1e-4, |
|
norm=True, attn=False, heads=4, ndecay=4, lstm=False, gelu=True, |
|
kernel=3, dilate=True): |
|
""" |
|
Args: |
|
channels: input/output channels for residual branch. |
|
compress: amount of channel compression inside the branch. |
|
depth: number of layers in the residual branch. Each layer has its own |
|
projection, and potentially LSTM and attention. |
|
init: initial scale for LayerNorm. |
|
norm: use GroupNorm. |
|
attn: use LocalAttention. |
|
heads: number of heads for the LocalAttention. |
|
ndecay: number of decay controls in the LocalAttention. |
|
lstm: use LSTM. |
|
gelu: Use GELU activation. |
|
kernel: kernel size for the (dilated) convolutions. |
|
dilate: if true, use dilation, increasing with the depth. |
|
""" |
|
|
|
super().__init__() |
|
assert kernel % 2 == 1 |
|
self.channels = channels |
|
self.compress = compress |
|
self.depth = abs(depth) |
|
dilate = depth > 0 |
|
|
|
norm_fn: tp.Callable[[int], nn.Module] |
|
norm_fn = lambda d: nn.Identity() |
|
if norm: |
|
norm_fn = lambda d: nn.GroupNorm(1, d) |
|
|
|
hidden = int(channels / compress) |
|
|
|
act: tp.Type[nn.Module] |
|
if gelu: |
|
act = nn.GELU |
|
else: |
|
act = nn.ReLU |
|
|
|
self.layers = nn.ModuleList([]) |
|
for d in range(self.depth): |
|
dilation = 2 ** d if dilate else 1 |
|
padding = dilation * (kernel // 2) |
|
mods = [ |
|
nn.Conv1d(channels, hidden, kernel, dilation=dilation, padding=padding), |
|
norm_fn(hidden), act(), |
|
nn.Conv1d(hidden, 2 * channels, 1), |
|
norm_fn(2 * channels), nn.GLU(1), |
|
LayerScale(channels, init), |
|
] |
|
if attn: |
|
mods.insert(3, LocalState(hidden, heads=heads, ndecay=ndecay)) |
|
if lstm: |
|
mods.insert(3, BLSTM(hidden, layers=2, max_steps=200, skip=True)) |
|
layer = nn.Sequential(*mods) |
|
self.layers.append(layer) |
|
|
|
def forward(self, x): |
|
for layer in self.layers: |
|
x = x + layer(x) |
|
return x |
|
|
|
|
|
class LocalState(nn.Module): |
|
"""Local state allows to have attention based only on data (no positional embedding), |
|
but while setting a constraint on the time window (e.g. decaying penalty term). |
|
|
|
Also a failed experiments with trying to provide some frequency based attention. |
|
""" |
|
def __init__(self, channels: int, heads: int = 4, nfreqs: int = 0, ndecay: int = 4): |
|
super().__init__() |
|
assert channels % heads == 0, (channels, heads) |
|
self.heads = heads |
|
self.nfreqs = nfreqs |
|
self.ndecay = ndecay |
|
self.content = nn.Conv1d(channels, channels, 1) |
|
self.query = nn.Conv1d(channels, channels, 1) |
|
self.key = nn.Conv1d(channels, channels, 1) |
|
if nfreqs: |
|
self.query_freqs = nn.Conv1d(channels, heads * nfreqs, 1) |
|
if ndecay: |
|
self.query_decay = nn.Conv1d(channels, heads * ndecay, 1) |
|
|
|
self.query_decay.weight.data *= 0.01 |
|
assert self.query_decay.bias is not None |
|
self.query_decay.bias.data[:] = -2 |
|
self.proj = nn.Conv1d(channels + heads * nfreqs, channels, 1) |
|
|
|
def forward(self, x): |
|
B, C, T = x.shape |
|
heads = self.heads |
|
indexes = torch.arange(T, device=x.device, dtype=x.dtype) |
|
|
|
delta = indexes[:, None] - indexes[None, :] |
|
|
|
queries = self.query(x).view(B, heads, -1, T) |
|
keys = self.key(x).view(B, heads, -1, T) |
|
|
|
dots = torch.einsum("bhct,bhcs->bhts", keys, queries) |
|
dots /= keys.shape[2]**0.5 |
|
if self.nfreqs: |
|
periods = torch.arange(1, self.nfreqs + 1, device=x.device, dtype=x.dtype) |
|
freq_kernel = torch.cos(2 * math.pi * delta / periods.view(-1, 1, 1)) |
|
freq_q = self.query_freqs(x).view(B, heads, -1, T) / self.nfreqs ** 0.5 |
|
dots += torch.einsum("fts,bhfs->bhts", freq_kernel, freq_q) |
|
if self.ndecay: |
|
decays = torch.arange(1, self.ndecay + 1, device=x.device, dtype=x.dtype) |
|
decay_q = self.query_decay(x).view(B, heads, -1, T) |
|
decay_q = torch.sigmoid(decay_q) / 2 |
|
decay_kernel = - decays.view(-1, 1, 1) * delta.abs() / self.ndecay**0.5 |
|
dots += torch.einsum("fts,bhfs->bhts", decay_kernel, decay_q) |
|
|
|
|
|
dots.masked_fill_(torch.eye(T, device=dots.device, dtype=torch.bool), -100) |
|
weights = torch.softmax(dots, dim=2) |
|
|
|
content = self.content(x).view(B, heads, -1, T) |
|
result = torch.einsum("bhts,bhct->bhcs", weights, content) |
|
if self.nfreqs: |
|
time_sig = torch.einsum("bhts,fts->bhfs", weights, freq_kernel) |
|
result = torch.cat([result, time_sig], 2) |
|
result = result.reshape(B, -1, T) |
|
return x + self.proj(result) |
|
|
|
|
|
class Demucs(nn.Module): |
|
@capture_init |
|
def __init__(self, |
|
sources, |
|
|
|
audio_channels=2, |
|
channels=64, |
|
growth=2., |
|
|
|
depth=6, |
|
rewrite=True, |
|
lstm_layers=0, |
|
|
|
kernel_size=8, |
|
stride=4, |
|
context=1, |
|
|
|
gelu=True, |
|
glu=True, |
|
|
|
norm_starts=4, |
|
norm_groups=4, |
|
|
|
dconv_mode=1, |
|
dconv_depth=2, |
|
dconv_comp=4, |
|
dconv_attn=4, |
|
dconv_lstm=4, |
|
dconv_init=1e-4, |
|
|
|
normalize=True, |
|
resample=True, |
|
|
|
rescale=0.1, |
|
|
|
samplerate=44100, |
|
segment=4 * 10): |
|
""" |
|
Args: |
|
sources (list[str]): list of source names |
|
audio_channels (int): stereo or mono |
|
channels (int): first convolution channels |
|
depth (int): number of encoder/decoder layers |
|
growth (float): multiply (resp divide) number of channels by that |
|
for each layer of the encoder (resp decoder) |
|
depth (int): number of layers in the encoder and in the decoder. |
|
rewrite (bool): add 1x1 convolution to each layer. |
|
lstm_layers (int): number of lstm layers, 0 = no lstm. Deactivated |
|
by default, as this is now replaced by the smaller and faster small LSTMs |
|
in the DConv branches. |
|
kernel_size (int): kernel size for convolutions |
|
stride (int): stride for convolutions |
|
context (int): kernel size of the convolution in the |
|
decoder before the transposed convolution. If > 1, |
|
will provide some context from neighboring time steps. |
|
gelu: use GELU activation function. |
|
glu (bool): use glu instead of ReLU for the 1x1 rewrite conv. |
|
norm_starts: layer at which group norm starts being used. |
|
decoder layers are numbered in reverse order. |
|
norm_groups: number of groups for group norm. |
|
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both. |
|
dconv_depth: depth of residual DConv branch. |
|
dconv_comp: compression of DConv branch. |
|
dconv_attn: adds attention layers in DConv branch starting at this layer. |
|
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer. |
|
dconv_init: initial scale for the DConv branch LayerScale. |
|
normalize (bool): normalizes the input audio on the fly, and scales back |
|
the output by the same amount. |
|
resample (bool): upsample x2 the input and downsample /2 the output. |
|
rescale (int): rescale initial weights of convolutions |
|
to get their standard deviation closer to `rescale`. |
|
samplerate (int): stored as meta information for easing |
|
future evaluations of the model. |
|
segment (float): duration of the chunks of audio to ideally evaluate the model on. |
|
This is used by `demucs.apply.apply_model`. |
|
""" |
|
|
|
super().__init__() |
|
self.audio_channels = audio_channels |
|
self.sources = sources |
|
self.kernel_size = kernel_size |
|
self.context = context |
|
self.stride = stride |
|
self.depth = depth |
|
self.resample = resample |
|
self.channels = channels |
|
self.normalize = normalize |
|
self.samplerate = samplerate |
|
self.segment = segment |
|
self.encoder = nn.ModuleList() |
|
self.decoder = nn.ModuleList() |
|
self.skip_scales = nn.ModuleList() |
|
|
|
if glu: |
|
activation = nn.GLU(dim=1) |
|
ch_scale = 2 |
|
else: |
|
activation = nn.ReLU() |
|
ch_scale = 1 |
|
if gelu: |
|
act2 = nn.GELU |
|
else: |
|
act2 = nn.ReLU |
|
|
|
in_channels = audio_channels |
|
padding = 0 |
|
for index in range(depth): |
|
norm_fn = lambda d: nn.Identity() |
|
if index >= norm_starts: |
|
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) |
|
|
|
encode = [] |
|
encode += [ |
|
nn.Conv1d(in_channels, channels, kernel_size, stride), |
|
norm_fn(channels), |
|
act2(), |
|
] |
|
attn = index >= dconv_attn |
|
lstm = index >= dconv_lstm |
|
if dconv_mode & 1: |
|
encode += [DConv(channels, depth=dconv_depth, init=dconv_init, |
|
compress=dconv_comp, attn=attn, lstm=lstm)] |
|
if rewrite: |
|
encode += [ |
|
nn.Conv1d(channels, ch_scale * channels, 1), |
|
norm_fn(ch_scale * channels), activation] |
|
self.encoder.append(nn.Sequential(*encode)) |
|
|
|
decode = [] |
|
if index > 0: |
|
out_channels = in_channels |
|
else: |
|
out_channels = len(self.sources) * audio_channels |
|
if rewrite: |
|
decode += [ |
|
nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context), |
|
norm_fn(ch_scale * channels), activation] |
|
if dconv_mode & 2: |
|
decode += [DConv(channels, depth=dconv_depth, init=dconv_init, |
|
compress=dconv_comp, attn=attn, lstm=lstm)] |
|
decode += [nn.ConvTranspose1d(channels, out_channels, |
|
kernel_size, stride, padding=padding)] |
|
if index > 0: |
|
decode += [norm_fn(out_channels), act2()] |
|
self.decoder.insert(0, nn.Sequential(*decode)) |
|
in_channels = channels |
|
channels = int(growth * channels) |
|
|
|
channels = in_channels |
|
if lstm_layers: |
|
self.lstm = BLSTM(channels, lstm_layers) |
|
else: |
|
self.lstm = None |
|
|
|
if rescale: |
|
rescale_module(self, reference=rescale) |
|
|
|
def valid_length(self, length): |
|
""" |
|
Return the nearest valid length to use with the model so that |
|
there is no time steps left over in a convolution, e.g. for all |
|
layers, size of the input - kernel_size % stride = 0. |
|
|
|
Note that input are automatically padded if necessary to ensure that the output |
|
has the same length as the input. |
|
""" |
|
if self.resample: |
|
length *= 2 |
|
|
|
for _ in range(self.depth): |
|
length = math.ceil((length - self.kernel_size) / self.stride) + 1 |
|
length = max(1, length) |
|
|
|
for idx in range(self.depth): |
|
length = (length - 1) * self.stride + self.kernel_size |
|
|
|
if self.resample: |
|
length = math.ceil(length / 2) |
|
return int(length) |
|
|
|
def forward(self, mix): |
|
x = mix |
|
length = x.shape[-1] |
|
|
|
if self.normalize: |
|
mono = mix.mean(dim=1, keepdim=True) |
|
mean = mono.mean(dim=-1, keepdim=True) |
|
std = mono.std(dim=-1, keepdim=True) |
|
x = (x - mean) / (1e-5 + std) |
|
else: |
|
mean = 0 |
|
std = 1 |
|
|
|
delta = self.valid_length(length) - length |
|
x = F.pad(x, (delta // 2, delta - delta // 2)) |
|
|
|
if self.resample: |
|
x = julius.resample_frac(x, 1, 2) |
|
|
|
saved = [] |
|
for encode in self.encoder: |
|
x = encode(x) |
|
saved.append(x) |
|
|
|
if self.lstm: |
|
x = self.lstm(x) |
|
|
|
for decode in self.decoder: |
|
skip = saved.pop(-1) |
|
skip = center_trim(skip, x) |
|
x = decode(x + skip) |
|
|
|
if self.resample: |
|
x = julius.resample_frac(x, 2, 1) |
|
x = x * std + mean |
|
x = center_trim(x, length) |
|
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1)) |
|
return x |
|
|
|
def load_state_dict(self, state, strict=True): |
|
|
|
for idx in range(self.depth): |
|
for a in ['encoder', 'decoder']: |
|
for b in ['bias', 'weight']: |
|
new = f'{a}.{idx}.3.{b}' |
|
old = f'{a}.{idx}.2.{b}' |
|
if old in state and new not in state: |
|
state[new] = state.pop(old) |
|
super().load_state_dict(state, strict=strict) |
|
|