|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from . import layers_new as layers |
|
|
|
class BaseNet(nn.Module): |
|
|
|
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))): |
|
super(BaseNet, self).__init__() |
|
self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1) |
|
self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1) |
|
self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1) |
|
self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1) |
|
self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1) |
|
|
|
self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True) |
|
|
|
self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1) |
|
self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1) |
|
self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1) |
|
self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm) |
|
self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1) |
|
|
|
def __call__(self, x): |
|
e1 = self.enc1(x) |
|
e2 = self.enc2(e1) |
|
e3 = self.enc3(e2) |
|
e4 = self.enc4(e3) |
|
e5 = self.enc5(e4) |
|
|
|
h = self.aspp(e5) |
|
|
|
h = self.dec4(h, e4) |
|
h = self.dec3(h, e3) |
|
h = self.dec2(h, e2) |
|
h = torch.cat([h, self.lstm_dec2(h)], dim=1) |
|
h = self.dec1(h, e1) |
|
|
|
return h |
|
|
|
class CascadedNet(nn.Module): |
|
|
|
def __init__(self, n_fft, nn_arch_size=51000, nout=32, nout_lstm=128): |
|
super(CascadedNet, self).__init__() |
|
self.max_bin = n_fft // 2 |
|
self.output_bin = n_fft // 2 + 1 |
|
self.nin_lstm = self.max_bin // 2 |
|
self.offset = 64 |
|
nout = 64 if nn_arch_size == 218409 else nout |
|
|
|
|
|
|
|
self.stg1_low_band_net = nn.Sequential( |
|
BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm), |
|
layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0) |
|
) |
|
self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2) |
|
|
|
self.stg2_low_band_net = nn.Sequential( |
|
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm), |
|
layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0) |
|
) |
|
self.stg2_high_band_net = BaseNet(nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2) |
|
|
|
self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm) |
|
|
|
self.out = nn.Conv2d(nout, 2, 1, bias=False) |
|
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False) |
|
|
|
def forward(self, x): |
|
x = x[:, :, :self.max_bin] |
|
|
|
bandw = x.size()[2] // 2 |
|
l1_in = x[:, :, :bandw] |
|
h1_in = x[:, :, bandw:] |
|
l1 = self.stg1_low_band_net(l1_in) |
|
h1 = self.stg1_high_band_net(h1_in) |
|
aux1 = torch.cat([l1, h1], dim=2) |
|
|
|
l2_in = torch.cat([l1_in, l1], dim=1) |
|
h2_in = torch.cat([h1_in, h1], dim=1) |
|
l2 = self.stg2_low_band_net(l2_in) |
|
h2 = self.stg2_high_band_net(h2_in) |
|
aux2 = torch.cat([l2, h2], dim=2) |
|
|
|
f3_in = torch.cat([x, aux1, aux2], dim=1) |
|
f3 = self.stg3_full_band_net(f3_in) |
|
|
|
mask = torch.sigmoid(self.out(f3)) |
|
mask = F.pad( |
|
input=mask, |
|
pad=(0, 0, 0, self.output_bin - mask.size()[2]), |
|
mode='replicate' |
|
) |
|
|
|
if self.training: |
|
aux = torch.cat([aux1, aux2], dim=1) |
|
aux = torch.sigmoid(self.aux_out(aux)) |
|
aux = F.pad( |
|
input=aux, |
|
pad=(0, 0, 0, self.output_bin - aux.size()[2]), |
|
mode='replicate' |
|
) |
|
return mask, aux |
|
else: |
|
return mask |
|
|
|
def predict_mask(self, x): |
|
mask = self.forward(x) |
|
|
|
if self.offset > 0: |
|
mask = mask[:, :, :, self.offset:-self.offset] |
|
assert mask.size()[3] > 0 |
|
|
|
return mask |
|
|
|
def predict(self, x): |
|
mask = self.forward(x) |
|
pred_mag = x * mask |
|
|
|
if self.offset > 0: |
|
pred_mag = pred_mag[:, :, :, self.offset:-self.offset] |
|
assert pred_mag.size()[3] > 0 |
|
|
|
return pred_mag |
|
|