File size: 17,434 Bytes
54c22e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import typing as tp
import julius
import torch
from torch import nn
from torch.nn import functional as F
from .states import capture_init
from .utils import center_trim, unfold
class BLSTM(nn.Module):
"""
BiLSTM with same hidden units as input dim.
If `max_steps` is not None, input will be splitting in overlapping
chunks and the LSTM applied separately on each chunk.
"""
def __init__(self, dim, layers=1, max_steps=None, skip=False):
super().__init__()
assert max_steps is None or max_steps % 4 == 0
self.max_steps = max_steps
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
self.linear = nn.Linear(2 * dim, dim)
self.skip = skip
def forward(self, x):
B, C, T = x.shape
y = x
framed = False
if self.max_steps is not None and T > self.max_steps:
width = self.max_steps
stride = width // 2
frames = unfold(x, width, stride)
nframes = frames.shape[2]
framed = True
x = frames.permute(0, 2, 1, 3).reshape(-1, C, width)
x = x.permute(2, 0, 1)
x = self.lstm(x)[0]
x = self.linear(x)
x = x.permute(1, 2, 0)
if framed:
out = []
frames = x.reshape(B, -1, C, width)
limit = stride // 2
for k in range(nframes):
if k == 0:
out.append(frames[:, k, :, :-limit])
elif k == nframes - 1:
out.append(frames[:, k, :, limit:])
else:
out.append(frames[:, k, :, limit:-limit])
out = torch.cat(out, -1)
out = out[..., :T]
x = out
if self.skip:
x = x + y
return x
def rescale_conv(conv, reference):
"""Rescale initial weight scale. It is unclear why it helps but it certainly does.
"""
std = conv.weight.std().detach()
scale = (std / reference)**0.5
conv.weight.data /= scale
if conv.bias is not None:
conv.bias.data /= scale
def rescale_module(module, reference):
for sub in module.modules():
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d, nn.Conv2d, nn.ConvTranspose2d)):
rescale_conv(sub, reference)
class LayerScale(nn.Module):
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
This rescales diagonaly residual outputs close to 0 initially, then learnt.
"""
def __init__(self, channels: int, init: float = 0):
super().__init__()
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
self.scale.data[:] = init
def forward(self, x):
return self.scale[:, None] * x
class DConv(nn.Module):
"""
New residual branches in each encoder layer.
This alternates dilated convolutions, potentially with LSTMs and attention.
Also before entering each residual branch, dimension is projected on a smaller subspace,
e.g. of dim `channels // compress`.
"""
def __init__(self, channels: int, compress: float = 4, depth: int = 2, init: float = 1e-4,
norm=True, attn=False, heads=4, ndecay=4, lstm=False, gelu=True,
kernel=3, dilate=True):
"""
Args:
channels: input/output channels for residual branch.
compress: amount of channel compression inside the branch.
depth: number of layers in the residual branch. Each layer has its own
projection, and potentially LSTM and attention.
init: initial scale for LayerNorm.
norm: use GroupNorm.
attn: use LocalAttention.
heads: number of heads for the LocalAttention.
ndecay: number of decay controls in the LocalAttention.
lstm: use LSTM.
gelu: Use GELU activation.
kernel: kernel size for the (dilated) convolutions.
dilate: if true, use dilation, increasing with the depth.
"""
super().__init__()
assert kernel % 2 == 1
self.channels = channels
self.compress = compress
self.depth = abs(depth)
dilate = depth > 0
norm_fn: tp.Callable[[int], nn.Module]
norm_fn = lambda d: nn.Identity() # noqa
if norm:
norm_fn = lambda d: nn.GroupNorm(1, d) # noqa
hidden = int(channels / compress)
act: tp.Type[nn.Module]
if gelu:
act = nn.GELU
else:
act = nn.ReLU
self.layers = nn.ModuleList([])
for d in range(self.depth):
dilation = 2 ** d if dilate else 1
padding = dilation * (kernel // 2)
mods = [
nn.Conv1d(channels, hidden, kernel, dilation=dilation, padding=padding),
norm_fn(hidden), act(),
nn.Conv1d(hidden, 2 * channels, 1),
norm_fn(2 * channels), nn.GLU(1),
LayerScale(channels, init),
]
if attn:
mods.insert(3, LocalState(hidden, heads=heads, ndecay=ndecay))
if lstm:
mods.insert(3, BLSTM(hidden, layers=2, max_steps=200, skip=True))
layer = nn.Sequential(*mods)
self.layers.append(layer)
def forward(self, x):
for layer in self.layers:
x = x + layer(x)
return x
class LocalState(nn.Module):
"""Local state allows to have attention based only on data (no positional embedding),
but while setting a constraint on the time window (e.g. decaying penalty term).
Also a failed experiments with trying to provide some frequency based attention.
"""
def __init__(self, channels: int, heads: int = 4, nfreqs: int = 0, ndecay: int = 4):
super().__init__()
assert channels % heads == 0, (channels, heads)
self.heads = heads
self.nfreqs = nfreqs
self.ndecay = ndecay
self.content = nn.Conv1d(channels, channels, 1)
self.query = nn.Conv1d(channels, channels, 1)
self.key = nn.Conv1d(channels, channels, 1)
if nfreqs:
self.query_freqs = nn.Conv1d(channels, heads * nfreqs, 1)
if ndecay:
self.query_decay = nn.Conv1d(channels, heads * ndecay, 1)
# Initialize decay close to zero (there is a sigmoid), for maximum initial window.
self.query_decay.weight.data *= 0.01
assert self.query_decay.bias is not None # stupid type checker
self.query_decay.bias.data[:] = -2
self.proj = nn.Conv1d(channels + heads * nfreqs, channels, 1)
def forward(self, x):
B, C, T = x.shape
heads = self.heads
indexes = torch.arange(T, device=x.device, dtype=x.dtype)
# left index are keys, right index are queries
delta = indexes[:, None] - indexes[None, :]
queries = self.query(x).view(B, heads, -1, T)
keys = self.key(x).view(B, heads, -1, T)
# t are keys, s are queries
dots = torch.einsum("bhct,bhcs->bhts", keys, queries)
dots /= keys.shape[2]**0.5
if self.nfreqs:
periods = torch.arange(1, self.nfreqs + 1, device=x.device, dtype=x.dtype)
freq_kernel = torch.cos(2 * math.pi * delta / periods.view(-1, 1, 1))
freq_q = self.query_freqs(x).view(B, heads, -1, T) / self.nfreqs ** 0.5
dots += torch.einsum("fts,bhfs->bhts", freq_kernel, freq_q)
if self.ndecay:
decays = torch.arange(1, self.ndecay + 1, device=x.device, dtype=x.dtype)
decay_q = self.query_decay(x).view(B, heads, -1, T)
decay_q = torch.sigmoid(decay_q) / 2
decay_kernel = - decays.view(-1, 1, 1) * delta.abs() / self.ndecay**0.5
dots += torch.einsum("fts,bhfs->bhts", decay_kernel, decay_q)
# Kill self reference.
dots.masked_fill_(torch.eye(T, device=dots.device, dtype=torch.bool), -100)
weights = torch.softmax(dots, dim=2)
content = self.content(x).view(B, heads, -1, T)
result = torch.einsum("bhts,bhct->bhcs", weights, content)
if self.nfreqs:
time_sig = torch.einsum("bhts,fts->bhfs", weights, freq_kernel)
result = torch.cat([result, time_sig], 2)
result = result.reshape(B, -1, T)
return x + self.proj(result)
class Demucs(nn.Module):
@capture_init
def __init__(self,
sources,
# Channels
audio_channels=2,
channels=64,
growth=2.,
# Main structure
depth=6,
rewrite=True,
lstm_layers=0,
# Convolutions
kernel_size=8,
stride=4,
context=1,
# Activations
gelu=True,
glu=True,
# Normalization
norm_starts=4,
norm_groups=4,
# DConv residual branch
dconv_mode=1,
dconv_depth=2,
dconv_comp=4,
dconv_attn=4,
dconv_lstm=4,
dconv_init=1e-4,
# Pre/post processing
normalize=True,
resample=True,
# Weight init
rescale=0.1,
# Metadata
samplerate=44100,
segment=4 * 10):
"""
Args:
sources (list[str]): list of source names
audio_channels (int): stereo or mono
channels (int): first convolution channels
depth (int): number of encoder/decoder layers
growth (float): multiply (resp divide) number of channels by that
for each layer of the encoder (resp decoder)
depth (int): number of layers in the encoder and in the decoder.
rewrite (bool): add 1x1 convolution to each layer.
lstm_layers (int): number of lstm layers, 0 = no lstm. Deactivated
by default, as this is now replaced by the smaller and faster small LSTMs
in the DConv branches.
kernel_size (int): kernel size for convolutions
stride (int): stride for convolutions
context (int): kernel size of the convolution in the
decoder before the transposed convolution. If > 1,
will provide some context from neighboring time steps.
gelu: use GELU activation function.
glu (bool): use glu instead of ReLU for the 1x1 rewrite conv.
norm_starts: layer at which group norm starts being used.
decoder layers are numbered in reverse order.
norm_groups: number of groups for group norm.
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
dconv_depth: depth of residual DConv branch.
dconv_comp: compression of DConv branch.
dconv_attn: adds attention layers in DConv branch starting at this layer.
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
dconv_init: initial scale for the DConv branch LayerScale.
normalize (bool): normalizes the input audio on the fly, and scales back
the output by the same amount.
resample (bool): upsample x2 the input and downsample /2 the output.
rescale (int): rescale initial weights of convolutions
to get their standard deviation closer to `rescale`.
samplerate (int): stored as meta information for easing
future evaluations of the model.
segment (float): duration of the chunks of audio to ideally evaluate the model on.
This is used by `demucs.apply.apply_model`.
"""
super().__init__()
self.audio_channels = audio_channels
self.sources = sources
self.kernel_size = kernel_size
self.context = context
self.stride = stride
self.depth = depth
self.resample = resample
self.channels = channels
self.normalize = normalize
self.samplerate = samplerate
self.segment = segment
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
self.skip_scales = nn.ModuleList()
if glu:
activation = nn.GLU(dim=1)
ch_scale = 2
else:
activation = nn.ReLU()
ch_scale = 1
if gelu:
act2 = nn.GELU
else:
act2 = nn.ReLU
in_channels = audio_channels
padding = 0
for index in range(depth):
norm_fn = lambda d: nn.Identity() # noqa
if index >= norm_starts:
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
encode = []
encode += [
nn.Conv1d(in_channels, channels, kernel_size, stride),
norm_fn(channels),
act2(),
]
attn = index >= dconv_attn
lstm = index >= dconv_lstm
if dconv_mode & 1:
encode += [DConv(channels, depth=dconv_depth, init=dconv_init,
compress=dconv_comp, attn=attn, lstm=lstm)]
if rewrite:
encode += [
nn.Conv1d(channels, ch_scale * channels, 1),
norm_fn(ch_scale * channels), activation]
self.encoder.append(nn.Sequential(*encode))
decode = []
if index > 0:
out_channels = in_channels
else:
out_channels = len(self.sources) * audio_channels
if rewrite:
decode += [
nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context),
norm_fn(ch_scale * channels), activation]
if dconv_mode & 2:
decode += [DConv(channels, depth=dconv_depth, init=dconv_init,
compress=dconv_comp, attn=attn, lstm=lstm)]
decode += [nn.ConvTranspose1d(channels, out_channels,
kernel_size, stride, padding=padding)]
if index > 0:
decode += [norm_fn(out_channels), act2()]
self.decoder.insert(0, nn.Sequential(*decode))
in_channels = channels
channels = int(growth * channels)
channels = in_channels
if lstm_layers:
self.lstm = BLSTM(channels, lstm_layers)
else:
self.lstm = None
if rescale:
rescale_module(self, reference=rescale)
def valid_length(self, length):
"""
Return the nearest valid length to use with the model so that
there is no time steps left over in a convolution, e.g. for all
layers, size of the input - kernel_size % stride = 0.
Note that input are automatically padded if necessary to ensure that the output
has the same length as the input.
"""
if self.resample:
length *= 2
for _ in range(self.depth):
length = math.ceil((length - self.kernel_size) / self.stride) + 1
length = max(1, length)
for idx in range(self.depth):
length = (length - 1) * self.stride + self.kernel_size
if self.resample:
length = math.ceil(length / 2)
return int(length)
def forward(self, mix):
x = mix
length = x.shape[-1]
if self.normalize:
mono = mix.mean(dim=1, keepdim=True)
mean = mono.mean(dim=-1, keepdim=True)
std = mono.std(dim=-1, keepdim=True)
x = (x - mean) / (1e-5 + std)
else:
mean = 0
std = 1
delta = self.valid_length(length) - length
x = F.pad(x, (delta // 2, delta - delta // 2))
if self.resample:
x = julius.resample_frac(x, 1, 2)
saved = []
for encode in self.encoder:
x = encode(x)
saved.append(x)
if self.lstm:
x = self.lstm(x)
for decode in self.decoder:
skip = saved.pop(-1)
skip = center_trim(skip, x)
x = decode(x + skip)
if self.resample:
x = julius.resample_frac(x, 2, 1)
x = x * std + mean
x = center_trim(x, length)
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1))
return x
def load_state_dict(self, state, strict=True):
# fix a mismatch with previous generation Demucs models.
for idx in range(self.depth):
for a in ['encoder', 'decoder']:
for b in ['bias', 'weight']:
new = f'{a}.{idx}.3.{b}'
old = f'{a}.{idx}.2.{b}'
if old in state and new not in state:
state[new] = state.pop(old)
super().load_state_dict(state, strict=strict)
|