File size: 5,405 Bytes
54c22e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
from torch import nn
import torch.nn.functional as F

from . import layers

class BaseASPPNet(nn.Module):

    def __init__(self, nn_architecture, nin, ch, dilations=(4, 8, 16)):
        super(BaseASPPNet, self).__init__()
        self.nn_architecture = nn_architecture
        self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
        self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
        self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
        self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
        
        if self.nn_architecture == 129605:
            self.enc5 = layers.Encoder(ch * 8, ch * 16, 3, 2, 1)
            self.aspp = layers.ASPPModule(nn_architecture, ch * 16, ch * 32, dilations)
            self.dec5 = layers.Decoder(ch * (16 + 32), ch * 16, 3, 1, 1)
        else:
            self.aspp = layers.ASPPModule(nn_architecture, ch * 8, ch * 16, dilations)
            
        self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
        self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
        self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
        self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)

    def __call__(self, x):
        h, e1 = self.enc1(x)
        h, e2 = self.enc2(h)
        h, e3 = self.enc3(h)
        h, e4 = self.enc4(h)
        
        if self.nn_architecture == 129605:
            h, e5 = self.enc5(h)
            h = self.aspp(h)
            h = self.dec5(h, e5)
        else:
            h = self.aspp(h)
            
        h = self.dec4(h, e4)
        h = self.dec3(h, e3)
        h = self.dec2(h, e2)
        h = self.dec1(h, e1)

        return h

def determine_model_capacity(n_fft_bins, nn_architecture):
    
    sp_model_arch = [31191, 33966, 129605]
    hp_model_arch = [123821, 123812]
    hp2_model_arch = [537238, 537227]
    
    if nn_architecture in sp_model_arch:
        model_capacity_data = [
            (2, 16),
            (2, 16),
            (18, 8, 1, 1, 0),
            (8, 16),
            (34, 16, 1, 1, 0),
            (16, 32),
            (32, 2, 1),
            (16, 2, 1),
            (16, 2, 1),
        ]
    
    if nn_architecture in hp_model_arch:
        model_capacity_data = [
            (2, 32),
            (2, 32),
            (34, 16, 1, 1, 0),
            (16, 32),
            (66, 32, 1, 1, 0),
            (32, 64),
            (64, 2, 1),
            (32, 2, 1),
            (32, 2, 1),
        ]
       
    if nn_architecture in hp2_model_arch: 
        model_capacity_data = [
            (2, 64),
            (2, 64),
            (66, 32, 1, 1, 0),
            (32, 64),
            (130, 64, 1, 1, 0),
            (64, 128),
            (128, 2, 1),
            (64, 2, 1),
            (64, 2, 1),
        ]

    cascaded = CascadedASPPNet
    model = cascaded(n_fft_bins, model_capacity_data, nn_architecture)
    
    return model

class CascadedASPPNet(nn.Module):

    def __init__(self, n_fft, model_capacity_data, nn_architecture):
        super(CascadedASPPNet, self).__init__()
        self.stg1_low_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[0])
        self.stg1_high_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[1])

        self.stg2_bridge = layers.Conv2DBNActiv(*model_capacity_data[2])
        self.stg2_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[3])

        self.stg3_bridge = layers.Conv2DBNActiv(*model_capacity_data[4])
        self.stg3_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[5])

        self.out = nn.Conv2d(*model_capacity_data[6], bias=False)
        self.aux1_out = nn.Conv2d(*model_capacity_data[7], bias=False)
        self.aux2_out = nn.Conv2d(*model_capacity_data[8], bias=False)

        self.max_bin = n_fft // 2
        self.output_bin = n_fft // 2 + 1

        self.offset = 128

    def forward(self, x):
        mix = x.detach()
        x = x.clone()

        x = x[:, :, :self.max_bin]

        bandw = x.size()[2] // 2
        aux1 = torch.cat([
            self.stg1_low_band_net(x[:, :, :bandw]),
            self.stg1_high_band_net(x[:, :, bandw:])
        ], dim=2)

        h = torch.cat([x, aux1], dim=1)
        aux2 = self.stg2_full_band_net(self.stg2_bridge(h))

        h = torch.cat([x, aux1, aux2], dim=1)
        h = self.stg3_full_band_net(self.stg3_bridge(h))

        mask = torch.sigmoid(self.out(h))
        mask = F.pad(
            input=mask,
            pad=(0, 0, 0, self.output_bin - mask.size()[2]),
            mode='replicate')
 
        if self.training:
            aux1 = torch.sigmoid(self.aux1_out(aux1))
            aux1 = F.pad(
                input=aux1,
                pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
                mode='replicate')
            aux2 = torch.sigmoid(self.aux2_out(aux2))
            aux2 = F.pad(
                input=aux2,
                pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
                mode='replicate')
            return mask * mix, aux1 * mix, aux2 * mix
        else:
            return mask# * mix

    def predict_mask(self, x):
        mask = self.forward(x)

        if self.offset > 0:
            mask = mask[:, :, :, self.offset:-self.offset]

        return mask