File size: 7,513 Bytes
54c22e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
from functools import partial

class STFT:
    def __init__(self, n_fft, hop_length, dim_f, device):
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
        self.dim_f = dim_f
        self.device = device

    def __call__(self, x):
        
        x_is_mps = not x.device.type in ["cuda", "cpu"]
        if x_is_mps:
            x = x.cpu()

        window = self.window.to(x.device)
        batch_dims = x.shape[:-2]
        c, t = x.shape[-2:]
        x = x.reshape([-1, t])
        x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, window=window, center=True,return_complex=False)
        x = x.permute([0, 3, 1, 2])
        x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]])

        if x_is_mps:
            x = x.to(self.device)

        return x[..., :self.dim_f, :]

    def inverse(self, x):
        
        x_is_mps = not x.device.type in ["cuda", "cpu"]
        if x_is_mps:
            x = x.cpu()

        window = self.window.to(x.device)
        batch_dims = x.shape[:-3]
        c, f, t = x.shape[-3:]
        n = self.n_fft // 2 + 1
        f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device)
        x = torch.cat([x, f_pad], -2)
        x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t])
        x = x.permute([0, 2, 3, 1])
        x = x[..., 0] + x[..., 1] * 1.j
        x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop_length, window=window, center=True)
        x = x.reshape([*batch_dims, 2, -1])

        if x_is_mps:
            x = x.to(self.device)

        return x

def get_norm(norm_type):
    def norm(c, norm_type):
        if norm_type == 'BatchNorm':
            return nn.BatchNorm2d(c)
        elif norm_type == 'InstanceNorm':
            return nn.InstanceNorm2d(c, affine=True)
        elif 'GroupNorm' in norm_type:
            g = int(norm_type.replace('GroupNorm', ''))
            return nn.GroupNorm(num_groups=g, num_channels=c)
        else:
            return nn.Identity()

    return partial(norm, norm_type=norm_type)


def get_act(act_type):
    if act_type == 'gelu':
        return nn.GELU()
    elif act_type == 'relu':
        return nn.ReLU()
    elif act_type[:3] == 'elu':
        alpha = float(act_type.replace('elu', ''))
        return nn.ELU(alpha)
    else:
        raise Exception


class Upscale(nn.Module):
    def __init__(self, in_c, out_c, scale, norm, act):
        super().__init__()
        self.conv = nn.Sequential(
            norm(in_c),
            act,
            nn.ConvTranspose2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False)
        )

    def forward(self, x):
        return self.conv(x)


class Downscale(nn.Module):
    def __init__(self, in_c, out_c, scale, norm, act):
        super().__init__()
        self.conv = nn.Sequential(
            norm(in_c),
            act,
            nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False)
        )

    def forward(self, x):
        return self.conv(x)


class TFC_TDF(nn.Module):
    def __init__(self, in_c, c, l, f, bn, norm, act):
        super().__init__()

        self.blocks = nn.ModuleList()
        for i in range(l):
            block = nn.Module()

            block.tfc1 = nn.Sequential(
                norm(in_c),
                act,
                nn.Conv2d(in_c, c, 3, 1, 1, bias=False),
            )
            block.tdf = nn.Sequential(
                norm(c),
                act,
                nn.Linear(f, f // bn, bias=False),
                norm(c),
                act,
                nn.Linear(f // bn, f, bias=False),
            )
            block.tfc2 = nn.Sequential(
                norm(c),
                act,
                nn.Conv2d(c, c, 3, 1, 1, bias=False),
            )
            block.shortcut = nn.Conv2d(in_c, c, 1, 1, 0, bias=False)

            self.blocks.append(block)
            in_c = c

    def forward(self, x):
        for block in self.blocks:
            s = block.shortcut(x)
            x = block.tfc1(x)
            x = x + block.tdf(x)
            x = block.tfc2(x)
            x = x + s
        return x


class TFC_TDF_net(nn.Module):
    def __init__(self, config, device):
        super().__init__()
        self.config = config
        self.device = device

        norm = get_norm(norm_type=config.model.norm)
        act = get_act(act_type=config.model.act)

        self.num_target_instruments = 1 if config.training.target_instrument else len(config.training.instruments)
        self.num_subbands = config.model.num_subbands

        dim_c = self.num_subbands * config.audio.num_channels * 2
        n = config.model.num_scales
        scale = config.model.scale
        l = config.model.num_blocks_per_scale
        c = config.model.num_channels
        g = config.model.growth
        bn = config.model.bottleneck_factor
        f = config.audio.dim_f // self.num_subbands

        self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False)

        self.encoder_blocks = nn.ModuleList()
        for i in range(n):
            block = nn.Module()
            block.tfc_tdf = TFC_TDF(c, c, l, f, bn, norm, act)
            block.downscale = Downscale(c, c + g, scale, norm, act)
            f = f // scale[1]
            c += g
            self.encoder_blocks.append(block)

        self.bottleneck_block = TFC_TDF(c, c, l, f, bn, norm, act)

        self.decoder_blocks = nn.ModuleList()
        for i in range(n):
            block = nn.Module()
            block.upscale = Upscale(c, c - g, scale, norm, act)
            f = f * scale[1]
            c -= g
            block.tfc_tdf = TFC_TDF(2 * c, c, l, f, bn, norm, act)
            self.decoder_blocks.append(block)

        self.final_conv = nn.Sequential(
            nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False),
            act,
            nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False)
        )

        self.stft = STFT(config.audio.n_fft, config.audio.hop_length, config.audio.dim_f, self.device)

    def cac2cws(self, x):
        k = self.num_subbands
        b, c, f, t = x.shape
        x = x.reshape(b, c, k, f // k, t)
        x = x.reshape(b, c * k, f // k, t)
        return x

    def cws2cac(self, x):
        k = self.num_subbands
        b, c, f, t = x.shape
        x = x.reshape(b, c // k, k, f, t)
        x = x.reshape(b, c // k, f * k, t)
        return x

    def forward(self, x):

        x = self.stft(x)

        mix = x = self.cac2cws(x)

        first_conv_out = x = self.first_conv(x)

        x = x.transpose(-1, -2)

        encoder_outputs = []
        for block in self.encoder_blocks:
            x = block.tfc_tdf(x)
            encoder_outputs.append(x)
            x = block.downscale(x)

        x = self.bottleneck_block(x)

        for block in self.decoder_blocks:
            x = block.upscale(x)
            x = torch.cat([x, encoder_outputs.pop()], 1)
            x = block.tfc_tdf(x)

        x = x.transpose(-1, -2)

        x = x * first_conv_out  # reduce artifacts

        x = self.final_conv(torch.cat([mix, x], 1))

        x = self.cws2cac(x)

        if self.num_target_instruments > 1:
            b, c, f, t = x.shape
            x = x.reshape(b, self.num_target_instruments, -1, f, t)

        x = self.stft.inverse(x)

        return x