--- pipeline_tag: sentence-similarity language: multilingual license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ONNX convert of distiluse-base-multilingual-cased-v2 ## Conversion of [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co./sentence-transformers/distiluse-base-multilingual-cased-v2) This is a [sentence-transformers](https://www.SBERT.net) ONNX model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. This custom model outputs `last_hidden_state` similar like original sentence-transformer implementation. ## Usage (HuggingFace Optimum) Using this model becomes easy when you have [optimum](https://github.com/huggingface/optimum) installed: ``` python -m pip install optimum ``` You may also need following: ``` python -m pip install onnxruntime python -m pip install onnx ``` Then you can use the model like this: ```python from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks model = ORTModelForCustomTasks.from_pretrained("lorenpe2/distiluse-base-multilingual-cased-v2") tokenizer = AutoTokenizer.from_pretrained("lorenpe2/distiluse-base-multilingual-cased-v2") inputs = tokenizer("I love burritos!", return_tensors="pt") pred = model(**inputs) ``` You will also be able to leverage the pipeline API in transformers: ```python from transformers import pipeline onnx_extractor = pipeline("feature-extraction", model=model, tokenizer=tokenizer) text = "I love burritos!" pred = onnx_extractor(text) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distiluse-base-multilingual-cased-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```