--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - Anthropic/hh-rlhf --- [Pythia-160m](https://huggingface.co./EleutherAI/pythia-160m) supervised finetuned using TRLx library with the helpful subset of [Anthropic-hh-rlhf dataset](https://huggingface.co./datasets/Anthropic/hh-rlhf) for 1 epoch. Checkpoints are also uploaded. Fully reproducible finetuning code is available on [GitHub](https://github.com/lauraaisling/trlx-pythia/tree/main) [wandb log](https://wandb.ai/lauraomahony999/pythia-sft/runs/9507tygf) See [Pythia-160m](https://huggingface.co./EleutherAI/pythia-410m) for model details [(paper)](https://arxiv.org/abs/2101.00027). See further details of these models in the paper [Attributing Mode Collapse in the Fine-Tuning of Large Language Models](https://openreview.net/pdf?id=3pDMYjpOxk). You can cite these models if they are helpful as follows:
@inproceedings{o2024attributing, title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models}, author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella}, booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop}, year={2024} }hf (pretrained=lomahony/pythia-160m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr | |--------------|------:|------|-----:|---------------|-------:|---|-------| |arc_challenge | 1|none | 0|acc | 0.1894|± | 0.0115| | | |none | 0|acc_norm | 0.2235|± | 0.0122| |arc_easy | 1|none | 0|acc | 0.3889|± | 0.0100| | | |none | 0|acc_norm | 0.3737|± | 0.0099| |boolq | 2|none | 0|acc | 0.5346|± | 0.0087| |hellaswag | 1|none | 0|acc | 0.2801|± | 0.0045| | | |none | 0|acc_norm | 0.2949|± | 0.0046| |lambada_openai| 1|none | 0|perplexity |439.3682|± |23.5771| | | |none | 0|acc | 0.0984|± | 0.0041| |openbookqa | 1|none | 0|acc | 0.1580|± | 0.0163| | | |none | 0|acc_norm | 0.2260|± | 0.0187| |piqa | 1|none | 0|acc | 0.5936|± | 0.0115| | | |none | 0|acc_norm | 0.5865|± | 0.0115| |sciq | 1|none | 0|acc | 0.5710|± | 0.0157| | | |none | 0|acc_norm | 0.6290|± | 0.0153| |wikitext | 2|none | 0|word_perplexity| 87.3261|± |N/A | | | |none | 0|byte_perplexity| 2.3068|± |N/A | | | |none | 0|bits_per_byte | 1.2059|± |N/A | |winogrande | 1|none | 0|acc | 0.4878|± | 0.0140| hf (pretrained=lomahony/pythia-160m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr | |--------------|------:|------|-----:|---------------|--------:|---|-------| |arc_challenge | 1|none | 5|acc | 0.2022|± | 0.0117| | | |none | 5|acc_norm | 0.2270|± | 0.0122| |arc_easy | 1|none | 5|acc | 0.3733|± | 0.0099| | | |none | 5|acc_norm | 0.3746|± | 0.0099| |boolq | 2|none | 5|acc | 0.5413|± | 0.0087| |hellaswag | 1|none | 5|acc | 0.2770|± | 0.0045| | | |none | 5|acc_norm | 0.2853|± | 0.0045| |lambada_openai| 1|none | 5|perplexity |1644.8526|± |87.8870| | | |none | 5|acc | 0.0491|± | 0.0030| |openbookqa | 1|none | 5|acc | 0.1400|± | 0.0155| | | |none | 5|acc_norm | 0.2200|± | 0.0185| |piqa | 1|none | 5|acc | 0.5892|± | 0.0115| | | |none | 5|acc_norm | 0.5854|± | 0.0115| |sciq | 1|none | 5|acc | 0.5100|± | 0.0158| | | |none | 5|acc_norm | 0.6020|± | 0.0155| |wikitext | 2|none | 5|word_perplexity| 87.3261|± |N/A | | | |none | 5|byte_perplexity| 2.3068|± |N/A | | | |none | 5|bits_per_byte | 1.2059|± |N/A | |winogrande | 1|none | 5|acc | 0.5178|± | 0.0140|