--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - Anthropic/hh-rlhf --- [Pythia-1.4b](https://huggingface.co./EleutherAI/pythia-1.4b) supervised finetuned using TRLx library with the helpful subset of [Anthropic-hh-rlhf dataset](https://huggingface.co./datasets/Anthropic/hh-rlhf) for 1 epoch. Checkpoints are also uploaded. Fully reproducible finetuning code is available on [GitHub](https://github.com/lauraaisling/trlx-pythia/tree/main) [wandb log](https://wandb.ai/lauraomahony999/pythia-sft/runs/ydaj2ks8) See [Pythia-1.4b](https://huggingface.co./EleutherAI/pythia-1.4b) for model details [(paper)](https://arxiv.org/abs/2101.00027). See further details of these models in the paper [Attributing Mode Collapse in the Fine-Tuning of Large Language Models](https://openreview.net/pdf?id=3pDMYjpOxk). You can cite these models if they are helpful as follows:
@inproceedings{o2024attributing, title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models}, author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella}, booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop}, year={2024} }hf (pretrained=lomahony/pythia-1.4b-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |--------------|------:|------|-----:|---------------|------:|---|------| |arc_challenge | 1|none | 0|acc | 0.2679|± |0.0129| | | |none | 0|acc_norm | 0.2978|± |0.0134| |arc_easy | 1|none | 0|acc | 0.6120|± |0.0100| | | |none | 0|acc_norm | 0.5282|± |0.0102| |boolq | 2|none | 0|acc | 0.6260|± |0.0085| |hellaswag | 1|none | 0|acc | 0.4097|± |0.0049| | | |none | 0|acc_norm | 0.5212|± |0.0050| |lambada_openai| 1|none | 0|perplexity | 6.4836|± |0.1838| | | |none | 0|acc | 0.5789|± |0.0069| |openbookqa | 1|none | 0|acc | 0.2120|± |0.0183| | | |none | 0|acc_norm | 0.3340|± |0.0211| |piqa | 1|none | 0|acc | 0.7100|± |0.0106| | | |none | 0|acc_norm | 0.7144|± |0.0105| |sciq | 1|none | 0|acc | 0.8540|± |0.0112| | | |none | 0|acc_norm | 0.7830|± |0.0130| |wikitext | 2|none | 0|word_perplexity|15.8394|± |N/A | | | |none | 0|byte_perplexity| 1.6763|± |N/A | | | |none | 0|bits_per_byte | 0.7453|± |N/A | |winogrande | 1|none | 0|acc | 0.5872|± |0.0138| hf (pretrained=lomahony/pythia-1.4b-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |--------------|------:|------|-----:|---------------|------:|---|------| |arc_challenge | 1|none | 5|acc | 0.2892|± |0.0133| | | |none | 5|acc_norm | 0.3097|± |0.0135| |arc_easy | 1|none | 5|acc | 0.6444|± |0.0098| | | |none | 5|acc_norm | 0.6309|± |0.0099| |boolq | 2|none | 5|acc | 0.6333|± |0.0084| |hellaswag | 1|none | 5|acc | 0.4065|± |0.0049| | | |none | 5|acc_norm | 0.5215|± |0.0050| |lambada_openai| 1|none | 5|perplexity | 9.7040|± |0.2887| | | |none | 5|acc | 0.4951|± |0.0070| |openbookqa | 1|none | 5|acc | 0.2220|± |0.0186| | | |none | 5|acc_norm | 0.3100|± |0.0207| |piqa | 1|none | 5|acc | 0.7029|± |0.0107| | | |none | 5|acc_norm | 0.7127|± |0.0106| |sciq | 1|none | 5|acc | 0.9170|± |0.0087| | | |none | 5|acc_norm | 0.9160|± |0.0088| |wikitext | 2|none | 5|word_perplexity|15.8394|± |N/A | | | |none | 5|byte_perplexity| 1.6763|± |N/A | | | |none | 5|bits_per_byte | 0.7453|± |N/A | |winogrande | 1|none | 5|acc | 0.5699|± |0.0139|