lodrick-the-lafted commited on
Commit
cfa7fff
·
verified ·
1 Parent(s): 0333ebf

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - lodrick-the-lafted/Hermes-217K
5
+ ---
6
+
7
+ <img src=https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-217K/resolve/main/hermes-instruct.png>
8
+
9
+ # Hermes-Instruct-7B-217K
10
+
11
+ [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) trained with 217K rows of [teknium/openhermes](https://huggingface.co/datasets/teknium/openhermes), in Alpaca format.
12
+ Why? Mistral-7B-Instruct-v0.2 has native 32K context and rope theta of 1M. It's not a base model, so I've used the same recipe with different amounts of data to gauge the effects of further finetuning.
13
+
14
+ <br />
15
+ <br />
16
+
17
+ # Prompt Format
18
+
19
+ Both the default Mistral-Instruct tags and Alpaca are fine, so either:
20
+ ```
21
+ <s>[INST] {sys_prompt} {instruction} [/INST]
22
+ ```
23
+
24
+ or
25
+
26
+
27
+ ```
28
+ {sys_prompt}
29
+
30
+ ### Instruction:
31
+ {instruction}
32
+
33
+ ### Response:
34
+
35
+ ```
36
+ The tokenizer default is Alpaca this time around.
37
+
38
+ <br />
39
+ <br />
40
+
41
+ # Usage
42
+
43
+ ```python
44
+ from transformers import AutoTokenizer
45
+ import transformers
46
+ import torch
47
+
48
+ model = "lodrick-the-lafted/Hermes-Instruct-7B-217K"
49
+
50
+ tokenizer = AutoTokenizer.from_pretrained(model)
51
+ pipeline = transformers.pipeline(
52
+ "text-generation",
53
+ model=model,
54
+ model_kwargs={"torch_dtype": torch.bfloat16},
55
+ )
56
+
57
+ messages = [{"role": "user", "content": "Give me a cooking recipe for an apple pie."}]
58
+ prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
59
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95)
60
+ print(outputs[0]["generated_text"])
61
+ ```
62
+