lodist commited on
Commit
2ac92cb
·
verified ·
1 Parent(s): 2f8460b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 280.23 +/- 16.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb7d5d78ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb7d5d78d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb7d5d78dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb7d5d78e50>", "_build": "<function ActorCriticPolicy._build at 0x7bb7d5d78ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7bb7d5d78f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb7d5d79000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb7d5d79090>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb7d5d79120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb7d5d791b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb7d5d79240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb7d5d792d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb7779a9640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734076060818964293, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACrhij4odIG8QeelOo7Nwbi5VfK9nrLIuQAAgD8AAIA/5nMevWcpHz9ahkU9+b0Fv40FO7xlan89AAAAAAAAAADNr6i9smOiPqf4gD4+AdK+Re/QPGIkJT4AAAAAAAAAAICFOT0tPl4/cgIivcI6Db+zVqg9zP6SvQAAAAAAAAAAZkQcvB8N7bm6pU8zI7mErOInjruMtMWzAACAPwAAgD/mB5m9PZpNuXmiArlW/SO0KunpucYSGDgAAIA/AACAPzNbRz24Oac8pSdNvp2On76jVDC+4jRRvAAAAAAAAAAAM/yNvCmoTbqGRCA4wPAPMyPpW7pEVz23AACAPwAAgD9AmIK9FPiQukUAWL5CDgQ5cqy6ui1xbrgAAIA/AACAP00WMD4iqzo+Y8ycvqb6t753K4S9qf0KvgAAAAAAAAAADYUcvrp2ND/PuQY9QB0Iv5swW74wygc+AAAAAAAAAABmjiy77u6sPYYgGb5yQbe+m1oPvkM9Fb0AAAAAAAAAAABdwLzT1Ck/uzhxPZI88L4YJn69k+9OPQAAAAAAAAAA4LWRvnO3dT82k5W+V7MPvzhE0L7AMNS9AAAAAAAAAACWM6I+PaZHvaD59j5gyO87MkqpvrKguz0AAAAAAAAAAJq7WTx7ItW6mIiEvW5xaDxPL2s8BshKvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGgQ3YL9diMAWyUS8KMAXSUR0CiNYDs2NvPdX2UKGgGR0BxNF2V3Ux3aAdL1mgIR0CiNaNyPuG9dX2UKGgGR0Bx2b1nM+vAaAdLyGgIR0CiNjR82JizdX2UKGgGR0By21jtoi9qaAdLzGgIR0CiNmNqpLmIdX2UKGgGR0BuiyDAaef7aAdNEAFoCEdAojaGfbsWwnV9lChoBkdAcuWRaX8fm2gHS91oCEdAojbK8nNPg3V9lChoBkdAc9AeT3Zf2WgHTQEBaAhHQKI2zrEcbR51fZQoaAZHQHIjI3FUADJoB00aAWgIR0CiNuB4D9wWdX2UKGgGR0Bw0pbHIZIhaAdL+WgIR0CiNvl0xM37dX2UKGgGR0Bxw+3KB/ZvaAdL0GgIR0CiN40LMLWqdX2UKGgGR0Bvw4bhm5DraAdL0GgIR0CiN6+Vs1sMdX2UKGgGR0BxJKKFZgXuaAdL9WgIR0CiN7N0/4ZddX2UKGgGR0BaoT0Yj0L/aAdN6ANoCEdAojfg7YChe3V9lChoBkdAcv3qCHymRGgHS8doCEdAojgOqNp/PXV9lChoBkdAbk5C3w1BMWgHS85oCEdAojheRq46O3V9lChoBkdAcpmg0TDfnGgHS7loCEdAojh63iJfpnV9lChoBkdAcpUx7AtWdWgHS8toCEdAojiP7el9B3V9lChoBkdAcSNvnKW9lGgHS8xoCEdAojihu89Oh3V9lChoBkdAck2vCMxXXGgHS75oCEdAojj5S75EdHV9lChoBkdAciIhOgxrSGgHS8xoCEdAojllzuF6A3V9lChoBkdAckfxfOUt7WgHS9hoCEdAojl1jmSyMXV9lChoBkdAcVuy6tknTmgHS8RoCEdAojmDiQ1aXHV9lChoBkdAcF6Pa+N96WgHS8loCEdAojmX93r2QHV9lChoBkdAc1quMMqjJ2gHS/BoCEdAojorowEhaHV9lChoBkdAcUAIxQBPsWgHS9FoCEdAojpcLUkOZ3V9lChoBkdAcUqiGnGbTmgHS9RoCEdAojqGN96Tn3V9lChoBkdAcmPRP420iWgHS8hoCEdAojqMj5bhWHV9lChoBkdAccczZ6D5CWgHS9toCEdAomyJSeiBXnV9lChoBkdAcnVgRK6FumgHTSEBaAhHQKJs2NjLB9F1fZQoaAZHQG9mTrmhdt5oB0vGaAhHQKJs9depn6F1fZQoaAZHQHFq40ygwoNoB0vDaAhHQKJtCXhOxjd1fZQoaAZHQG45yteUpuxoB0v0aAhHQKJtP2OhkAh1fZQoaAZHQHPo25+YtxxoB0vUaAhHQKJtWaHbh3t1fZQoaAZHQHCdmOAAhjhoB0u4aAhHQKJtaMF2V3V1fZQoaAZHQHEkEal1r7BoB0vVaAhHQKJtb7+DOC51fZQoaAZHQHIp+RLbpNdoB0vIaAhHQKJuEVyFPBV1fZQoaAZHQHD9UYwZflZoB0vaaAhHQKJuThPTG5t1fZQoaAZHQHLBkk4WDYhoB0vXaAhHQKJudUyYXwd1fZQoaAZHQG5konrpqypoB0vtaAhHQKJusOG0u151fZQoaAZHQHPT1spG4I9oB0u8aAhHQKJvBKRMewN1fZQoaAZHQHDfiDEm6XloB0viaAhHQKJvNihFmWd1fZQoaAZHQHGtR4+r2g5oB0vkaAhHQKJvof3evZB1fZQoaAZHQHEoV94NZvFoB0vCaAhHQKJvr6ZYxL11fZQoaAZHQHFLQ9mpVCJoB0vOaAhHQKJvvpIMBp51fZQoaAZHQHPOd+b3Gn5oB0v7aAhHQKJvypUgjhV1fZQoaAZHQHJA2ykbgj1oB0vOaAhHQKJv9bpNbkh1fZQoaAZHQHD8R19v0iBoB00BAWgIR0CicCftx+8XdX2UKGgGR0Bx218x9G7SaAdL0GgIR0CicDOK4x1xdX2UKGgGR0BwRX5tWMjvaAdL0mgIR0CicFKD9OyndX2UKGgGR0BzVFvYODraaAdL0WgIR0CicGMWoFV1dX2UKGgGR0Bw6+msNlRQaAdL12gIR0CicG4fnwG4dX2UKGgGR0BvnFpEhJRPaAdL2WgIR0CicRrYGt6pdX2UKGgGR0By3/QQcxTLaAdL2GgIR0CicUjLB9CvdX2UKGgGR0BzabG8274BaAdL1GgIR0CicWCg00m/dX2UKGgGR0By2KcZtNzsaAdL22gIR0CicbRYA80UdX2UKGgGR0Bv2ZIlMRHxaAdLvmgIR0CicdM/IKc/dX2UKGgGR0Bz/Cu5jH4oaAdLvWgIR0Cicjkb5uZUdX2UKGgGR0BxW/KlpGnXaAdL6WgIR0CickI8p1A8dX2UKGgGR0BykxLbpNbkaAdLwmgIR0CiclVX3g1ndX2UKGgGR0BwjYEnssxxaAdLwWgIR0Cicl8KPXCkdX2UKGgGR0BxfSotL+PzaAdL3GgIR0Cicsd8Rcu8dX2UKGgGR0BzokbXHzYmaAdLyWgIR0Cicuh0yP+5dX2UKGgGR0Bxeou+RHPNaAdL3mgIR0CicvQMYuTSdX2UKGgGR0BwCY4n4O+aaAdL5GgIR0CiczqoybhFdX2UKGgGR0ByWaIj4YaYaAdL1mgIR0Cic1dkSVW0dX2UKGgGR0Bx8QtWdVebaAdL8WgIR0Cic5RF7UobdX2UKGgGR0ByPw065oXbaAdLs2gIR0Cic8vqLS/kdX2UKGgGR0Bs/IsAeaKDaAdL1GgIR0CidEsU7CBPdX2UKGgGR0BwbDOTq0MPaAdLyWgIR0CidHw5WBBidX2UKGgGR0Bxa+rMkhRqaAdLv2gIR0CidO4cWCVbdX2UKGgGR0BwbKJl8PWhaAdL5GgIR0CidYdtMwlCdX2UKGgGR0BuxMRradtmaAdLx2gIR0CiddchLXcydX2UKGgGR0BxZNbs4T9LaAdL1GgIR0Cidf02LpA2dX2UKGgGR0BuBdG9YfW+aAdL22gIR0CidhjR+jM3dX2UKGgGR0BxdpwvQF9saAdLsWgIR0CidkeKCQLedX2UKGgGR0BwcyE9Mbm2aAdLyGgIR0CidsshHLA6dX2UKGgGR0Bzgdl18stkaAdL/2gIR0CidwmiYb84dX2UKGgGR0BvxMzwc5sCaAdLyGgIR0CidzPiLl3hdX2UKGgGR0ByWu1uzhP1aAdLv2gIR0Cid5k6kqMFdX2UKGgGR0BxvW3pfQa8aAdL/GgIR0Cid6Vd5Y5ldX2UKGgGR0Bw9I7+1jRVaAdLxWgIR0Cid/pOWSlndX2UKGgGR0ByDIF/x2B8aAdL7mgIR0CieDIsI3R5dX2UKGgGR0BwN2tbLU1AaAdL0WgIR0CieLOktVaPdX2UKGgGR0BzObOPeYUnaAdL2GgIR0CieQLvb48EdX2UKGgGR0BzZGU/wAlwaAdLzmgIR0CieUKAz544dX2UKGgGR0BtybF6zE75aAdLwWgIR0Cieg+WnjyXdX2UKGgGR0BwepcGC7K8aAdLyWgIR0CiehYe1a4ddX2UKGgGR0Bxw3sOXmeUaAdL52gIR0Ciem4P5HmSdX2UKGgGR0BxQyWE9MbnaAdL2mgIR0CieqfzjFQ3dX2UKGgGR0Bw3uTnq3VkaAdL4WgIR0CieubrLQokdX2UKGgGR0BxSFkXk5p8aAdLuGgIR0CievtK7I1cdX2UKGgGR0BwP2QKa5PNaAdLwGgIR0Cie1pXZGrkdX2UKGgGR0BzjAa5wwTNaAdL5mgIR0Cie12AXl8xdX2UKGgGR0BzGS1G9YfXaAdL22gIR0Cie2H62v0RdX2UKGgGR0ByOGT5ftx/aAdL42gIR0Cie+FzMibEdX2UKGgGR0BuNocDKYAsaAdL0mgIR0Cie+GqxTsIdX2UKGgGR0Buvhhpg1FZaAdLtmgIR0CifFh3Roh7dX2UKGgGR0BvfN1wHZ9NaAdLx2gIR0CifGz5ftx/dX2UKGgGR0BzlTS5RTCMaAdL12gIR0CifHOWjXWfdX2UKGgGR0Bwj33Ehq0uaAdL8GgIR0CifIACGN70dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98ae6257b1cec53ddec7dfaf7e4ac7607645f86814d1c5d5d955884e6323d8ca
3
+ size 147387
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb7d5d78ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb7d5d78d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb7d5d78dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb7d5d78e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bb7d5d78ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bb7d5d78f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb7d5d79000>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb7d5d79090>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bb7d5d79120>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb7d5d791b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb7d5d79240>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb7d5d792d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bb7779a9640>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1734076060818964293,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACrhij4odIG8QeelOo7Nwbi5VfK9nrLIuQAAgD8AAIA/5nMevWcpHz9ahkU9+b0Fv40FO7xlan89AAAAAAAAAADNr6i9smOiPqf4gD4+AdK+Re/QPGIkJT4AAAAAAAAAAICFOT0tPl4/cgIivcI6Db+zVqg9zP6SvQAAAAAAAAAAZkQcvB8N7bm6pU8zI7mErOInjruMtMWzAACAPwAAgD/mB5m9PZpNuXmiArlW/SO0KunpucYSGDgAAIA/AACAPzNbRz24Oac8pSdNvp2On76jVDC+4jRRvAAAAAAAAAAAM/yNvCmoTbqGRCA4wPAPMyPpW7pEVz23AACAPwAAgD9AmIK9FPiQukUAWL5CDgQ5cqy6ui1xbrgAAIA/AACAP00WMD4iqzo+Y8ycvqb6t753K4S9qf0KvgAAAAAAAAAADYUcvrp2ND/PuQY9QB0Iv5swW74wygc+AAAAAAAAAABmjiy77u6sPYYgGb5yQbe+m1oPvkM9Fb0AAAAAAAAAAABdwLzT1Ck/uzhxPZI88L4YJn69k+9OPQAAAAAAAAAA4LWRvnO3dT82k5W+V7MPvzhE0L7AMNS9AAAAAAAAAACWM6I+PaZHvaD59j5gyO87MkqpvrKguz0AAAAAAAAAAJq7WTx7ItW6mIiEvW5xaDxPL2s8BshKvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGgQ3YL9diMAWyUS8KMAXSUR0CiNYDs2NvPdX2UKGgGR0BxNF2V3Ux3aAdL1mgIR0CiNaNyPuG9dX2UKGgGR0Bx2b1nM+vAaAdLyGgIR0CiNjR82JizdX2UKGgGR0By21jtoi9qaAdLzGgIR0CiNmNqpLmIdX2UKGgGR0BuiyDAaef7aAdNEAFoCEdAojaGfbsWwnV9lChoBkdAcuWRaX8fm2gHS91oCEdAojbK8nNPg3V9lChoBkdAc9AeT3Zf2WgHTQEBaAhHQKI2zrEcbR51fZQoaAZHQHIjI3FUADJoB00aAWgIR0CiNuB4D9wWdX2UKGgGR0Bw0pbHIZIhaAdL+WgIR0CiNvl0xM37dX2UKGgGR0Bxw+3KB/ZvaAdL0GgIR0CiN40LMLWqdX2UKGgGR0Bvw4bhm5DraAdL0GgIR0CiN6+Vs1sMdX2UKGgGR0BxJKKFZgXuaAdL9WgIR0CiN7N0/4ZddX2UKGgGR0BaoT0Yj0L/aAdN6ANoCEdAojfg7YChe3V9lChoBkdAcv3qCHymRGgHS8doCEdAojgOqNp/PXV9lChoBkdAbk5C3w1BMWgHS85oCEdAojheRq46O3V9lChoBkdAcpmg0TDfnGgHS7loCEdAojh63iJfpnV9lChoBkdAcpUx7AtWdWgHS8toCEdAojiP7el9B3V9lChoBkdAcSNvnKW9lGgHS8xoCEdAojihu89Oh3V9lChoBkdAck2vCMxXXGgHS75oCEdAojj5S75EdHV9lChoBkdAciIhOgxrSGgHS8xoCEdAojllzuF6A3V9lChoBkdAckfxfOUt7WgHS9hoCEdAojl1jmSyMXV9lChoBkdAcVuy6tknTmgHS8RoCEdAojmDiQ1aXHV9lChoBkdAcF6Pa+N96WgHS8loCEdAojmX93r2QHV9lChoBkdAc1quMMqjJ2gHS/BoCEdAojorowEhaHV9lChoBkdAcUAIxQBPsWgHS9FoCEdAojpcLUkOZ3V9lChoBkdAcUqiGnGbTmgHS9RoCEdAojqGN96Tn3V9lChoBkdAcmPRP420iWgHS8hoCEdAojqMj5bhWHV9lChoBkdAccczZ6D5CWgHS9toCEdAomyJSeiBXnV9lChoBkdAcnVgRK6FumgHTSEBaAhHQKJs2NjLB9F1fZQoaAZHQG9mTrmhdt5oB0vGaAhHQKJs9depn6F1fZQoaAZHQHFq40ygwoNoB0vDaAhHQKJtCXhOxjd1fZQoaAZHQG45yteUpuxoB0v0aAhHQKJtP2OhkAh1fZQoaAZHQHPo25+YtxxoB0vUaAhHQKJtWaHbh3t1fZQoaAZHQHCdmOAAhjhoB0u4aAhHQKJtaMF2V3V1fZQoaAZHQHEkEal1r7BoB0vVaAhHQKJtb7+DOC51fZQoaAZHQHIp+RLbpNdoB0vIaAhHQKJuEVyFPBV1fZQoaAZHQHD9UYwZflZoB0vaaAhHQKJuThPTG5t1fZQoaAZHQHLBkk4WDYhoB0vXaAhHQKJudUyYXwd1fZQoaAZHQG5konrpqypoB0vtaAhHQKJusOG0u151fZQoaAZHQHPT1spG4I9oB0u8aAhHQKJvBKRMewN1fZQoaAZHQHDfiDEm6XloB0viaAhHQKJvNihFmWd1fZQoaAZHQHGtR4+r2g5oB0vkaAhHQKJvof3evZB1fZQoaAZHQHEoV94NZvFoB0vCaAhHQKJvr6ZYxL11fZQoaAZHQHFLQ9mpVCJoB0vOaAhHQKJvvpIMBp51fZQoaAZHQHPOd+b3Gn5oB0v7aAhHQKJvypUgjhV1fZQoaAZHQHJA2ykbgj1oB0vOaAhHQKJv9bpNbkh1fZQoaAZHQHD8R19v0iBoB00BAWgIR0CicCftx+8XdX2UKGgGR0Bx218x9G7SaAdL0GgIR0CicDOK4x1xdX2UKGgGR0BwRX5tWMjvaAdL0mgIR0CicFKD9OyndX2UKGgGR0BzVFvYODraaAdL0WgIR0CicGMWoFV1dX2UKGgGR0Bw6+msNlRQaAdL12gIR0CicG4fnwG4dX2UKGgGR0BvnFpEhJRPaAdL2WgIR0CicRrYGt6pdX2UKGgGR0By3/QQcxTLaAdL2GgIR0CicUjLB9CvdX2UKGgGR0BzabG8274BaAdL1GgIR0CicWCg00m/dX2UKGgGR0By2KcZtNzsaAdL22gIR0CicbRYA80UdX2UKGgGR0Bv2ZIlMRHxaAdLvmgIR0CicdM/IKc/dX2UKGgGR0Bz/Cu5jH4oaAdLvWgIR0Cicjkb5uZUdX2UKGgGR0BxW/KlpGnXaAdL6WgIR0CickI8p1A8dX2UKGgGR0BykxLbpNbkaAdLwmgIR0CiclVX3g1ndX2UKGgGR0BwjYEnssxxaAdLwWgIR0Cicl8KPXCkdX2UKGgGR0BxfSotL+PzaAdL3GgIR0Cicsd8Rcu8dX2UKGgGR0BzokbXHzYmaAdLyWgIR0Cicuh0yP+5dX2UKGgGR0Bxeou+RHPNaAdL3mgIR0CicvQMYuTSdX2UKGgGR0BwCY4n4O+aaAdL5GgIR0CiczqoybhFdX2UKGgGR0ByWaIj4YaYaAdL1mgIR0Cic1dkSVW0dX2UKGgGR0Bx8QtWdVebaAdL8WgIR0Cic5RF7UobdX2UKGgGR0ByPw065oXbaAdLs2gIR0Cic8vqLS/kdX2UKGgGR0Bs/IsAeaKDaAdL1GgIR0CidEsU7CBPdX2UKGgGR0BwbDOTq0MPaAdLyWgIR0CidHw5WBBidX2UKGgGR0Bxa+rMkhRqaAdLv2gIR0CidO4cWCVbdX2UKGgGR0BwbKJl8PWhaAdL5GgIR0CidYdtMwlCdX2UKGgGR0BuxMRradtmaAdLx2gIR0CiddchLXcydX2UKGgGR0BxZNbs4T9LaAdL1GgIR0Cidf02LpA2dX2UKGgGR0BuBdG9YfW+aAdL22gIR0CidhjR+jM3dX2UKGgGR0BxdpwvQF9saAdLsWgIR0CidkeKCQLedX2UKGgGR0BwcyE9Mbm2aAdLyGgIR0CidsshHLA6dX2UKGgGR0Bzgdl18stkaAdL/2gIR0CidwmiYb84dX2UKGgGR0BvxMzwc5sCaAdLyGgIR0CidzPiLl3hdX2UKGgGR0ByWu1uzhP1aAdLv2gIR0Cid5k6kqMFdX2UKGgGR0BxvW3pfQa8aAdL/GgIR0Cid6Vd5Y5ldX2UKGgGR0Bw9I7+1jRVaAdLxWgIR0Cid/pOWSlndX2UKGgGR0ByDIF/x2B8aAdL7mgIR0CieDIsI3R5dX2UKGgGR0BwN2tbLU1AaAdL0WgIR0CieLOktVaPdX2UKGgGR0BzObOPeYUnaAdL2GgIR0CieQLvb48EdX2UKGgGR0BzZGU/wAlwaAdLzmgIR0CieUKAz544dX2UKGgGR0BtybF6zE75aAdLwWgIR0Cieg+WnjyXdX2UKGgGR0BwepcGC7K8aAdLyWgIR0CiehYe1a4ddX2UKGgGR0Bxw3sOXmeUaAdL52gIR0Ciem4P5HmSdX2UKGgGR0BxQyWE9MbnaAdL2mgIR0CieqfzjFQ3dX2UKGgGR0Bw3uTnq3VkaAdL4WgIR0CieubrLQokdX2UKGgGR0BxSFkXk5p8aAdLuGgIR0CievtK7I1cdX2UKGgGR0BwP2QKa5PNaAdLwGgIR0Cie1pXZGrkdX2UKGgGR0BzjAa5wwTNaAdL5mgIR0Cie12AXl8xdX2UKGgGR0BzGS1G9YfXaAdL22gIR0Cie2H62v0RdX2UKGgGR0ByOGT5ftx/aAdL42gIR0Cie+FzMibEdX2UKGgGR0BuNocDKYAsaAdL0mgIR0Cie+GqxTsIdX2UKGgGR0Buvhhpg1FZaAdLtmgIR0CifFh3Roh7dX2UKGgGR0BvfN1wHZ9NaAdLx2gIR0CifGz5ftx/dX2UKGgGR0BzlTS5RTCMaAdL12gIR0CifHOWjXWfdX2UKGgGR0Bwj33Ehq0uaAdL8GgIR0CifIACGN70dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 1240,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.998,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 20,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2007a579f2a79572f8f558f3c8244ca947b93c5ff4270ecef33413d50709762
3
+ size 87978
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66a78cebc43ee3447ea961401492c80eeecb1d09590185e62776b4fb353df302
3
+ size 43634
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (185 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 280.2284986908203, "std_reward": 16.489813899792274, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-13T08:29:35.251349"}