lnros commited on
Commit
83a7b6a
·
1 Parent(s): fac2e3f

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1575.02 +/- 97.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07a1618eb32ceb16277c09b9f919c993d8e3d19cbe6a420752d9f996d5f23b9a
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff8d54ff70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff8d554040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff8d5540d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff8d554160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7eff8d5541f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7eff8d554280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff8d554310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff8d5543a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7eff8d554430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff8d5544c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff8d554550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff8d5545e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7eff8d54e7b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674626280336185171,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADswtb1/eL0+8vRHPwyqkD+sZzW/rvUcwI8gQj6cAww/+WciPwg7Zr9ywae+rVIrwPkqj7/vtFg/whj5vnAJrTyYOnA9fTG3Pym+bbl2aKw/KVmnPbGjt73BwYK/4s4iP17UND/W0Lw+ucEIP2Gznr/Ar3G9akk1P+5VPj9932i/79VUv0BL1L++h6g+prGxPbuq4DyIqRe/ieOBPlZ55b/z5lu+hVX7vE2eVL7sXjLAkK38vr+R8D8FcJI+iSnPvl6p5jzIxvE/o+OKvwbHVbxe1DQ/1tC8PrnBCD9hs56/C35DP9ohuz6v40c/MEJTvinPrr3raTjAVv5nPOubEb5j7x8/u0iiv+QkDj/M8ynAjz+Pvq4FBz82bK++qcAkwEJP375cRyZAYGiGvYrFbD9//Zg/LcyCP0j3ir8iXi28XtQ0P9bQvD6im++/YbOev3UWOj8BVpK/XG80v1bRFD8PUSHAggG+viclGb9xqcA+7NmFP/sFrr5jz1a+FbmuvurU679mTTU/HzsHvpKBHL8VzAY+HryKP4OOk78Bcje//CdbvpMxwT9WfIy/PvWiPV7UND/W0Lw+ucEIP2Gznr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADIGL61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABDbfvQAAAADXyNq/AAAAAOud1TwAAAAAGMHePwAAAADf5Ja9AAAAAFDM5z8AAAAAodL3PQAAAADDpN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjq40NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAq2aTwAAAAA+drxvwAAAADKOjE9AAAAAOWJ9D8AAAAAt2e6PAAAAAAhEuo/AAAAAFxDhr0AAAAA22bgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPCjDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB0fR29AAAAAIGH/L8AAAAA85L9vQAAAABb/vA/AAAAALAYBzwAAAAA8H70PwAAAAC9Xve9AAAAAD2R578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgyfa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAllCgvQAAAACvdO6/AAAAAFdSAL4AAAAA8Wb5PwAAAAD1PpI9AAAAAHC74T8AAAAAsBrVPQAAAADcqNq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJeSao4uK4yMAWyUTegDjAF0lEdAqAzT0Yj0MHV9lChoBkdAlquSEDhcaGgHTegDaAhHQKgOxuFYdQx1fZQoaAZHQJkOGax5cC5oB03oA2gIR0CoDwqbz9S/dX2UKGgGR0CYajdU83dcaAdN6ANoCEdAqBETuWrwOXV9lChoBkdAmD1AZCOWB2gHTegDaAhHQKgZNCoCMgl1fZQoaAZHQJevnqPfbbloB03oA2gIR0CoGzSHuZ1FdX2UKGgGR0CYLC5SFXaKaAdN6ANoCEdAqBt6CWeHz3V9lChoBkdAl7WHbRF7U2gHTegDaAhHQKgdnMB6rvN1fZQoaAZHQJkyNqFh5PdoB03oA2gIR0CoJe0Q9RrKdX2UKGgGR0CaGeVZLZi/aAdN6ANoCEdAqCgDcXWOInV9lChoBkdAmkWAHAymAWgHTegDaAhHQKgoSpMpPRB1fZQoaAZHQJot+RZEDyRoB03oA2gIR0CoKmdy1eBydX2UKGgGR0Cb4+1/Ue+3aAdN6ANoCEdAqDKUqWkadnV9lChoBkdAmvNtMwlByGgHTegDaAhHQKg0rPnB+F11fZQoaAZHQJq2iOcUdrBoB03oA2gIR0CoNPEC/47BdX2UKGgGR0CbpnMvysjnaAdN6ANoCEdAqDcLIPsiS3V9lChoBkdAmfpktZmqYWgHTegDaAhHQKg/GVO9FnZ1fZQoaAZHQJgKWApazNVoB03oA2gIR0CoQRXH7xd6dX2UKGgGR0CZezZRbbDeaAdN6ANoCEdAqEFbXOGCZnV9lChoBkdAmjWLDhtLtmgHTegDaAhHQKhDbtygf2d1fZQoaAZHQJyarFsHjZNoB03oA2gIR0CoS6adlNDddX2UKGgGR0CbQjpzLfUGaAdN6ANoCEdAqE2ikGiYcHV9lChoBkdAnCy8K9f1H2gHTegDaAhHQKhN6TCcf/51fZQoaAZHQJmYV/smfGxoB03oA2gIR0CoT/0QkHD8dX2UKGgGR0Ca8b2cawUyaAdN6ANoCEdAqFfvA0sOG3V9lChoBkdAnGojOkcjq2gHTegDaAhHQKhZ9YxL0z11fZQoaAZHQJ0hLSE12q1oB03oA2gIR0CoWjmRNh3JdX2UKGgGR0CbGb6+FlCkaAdN6ANoCEdAqFxpgogFHXV9lChoBkdAm6ngbZOBUmgHTegDaAhHQKhkc6cRUWF1fZQoaAZHQJ0yDWz4UN9oB03oA2gIR0CoZoNT1kDqdX2UKGgGR0Cbi2RJVbRnaAdN6ANoCEdAqGbHDaXa8HV9lChoBkdAnCuLGR3eN2gHTegDaAhHQKho3fMwDeV1fZQoaAZHQJiLbIYFaB9oB03oA2gIR0CocPQztTkydX2UKGgGR0CZKUqcmShbaAdN6ANoCEdAqHLr8R+SbHV9lChoBkdAmGWAF9roGWgHTegDaAhHQKhzMDAaef91fZQoaAZHQJq/p0W/JvJoB03oA2gIR0CodVNY0VJudX2UKGgGR0CWZLNg0CRwaAdN6ANoCEdAqH1sd1dPcnV9lChoBkdAk/tkZBLPEGgHTegDaAhHQKh/aSdOIqN1fZQoaAZHQJbvmUB4lhRoB03oA2gIR0Cof7YnndO7dX2UKGgGR0CRmIo0ALiNaAdN6ANoCEdAqIHVE/jbSXV9lChoBkdAlRYVrl/6PGgHTegDaAhHQKiJ9NATqSp1fZQoaAZHQJJnj4HoouxoB03oA2gIR0Coi/g7xNItdX2UKGgGR0CPCHf642CNaAdN6ANoCEdAqIw9uP3i73V9lChoBkdAlk+COFQEZGgHTegDaAhHQKiOVGjsUqR1fZQoaAZHQJSkuQXAM2FoB03oA2gIR0CollhRZU1idX2UKGgGR0CT6wpKBd2QaAdN6ANoCEdAqJhudK/VRXV9lChoBkdAlMM+85CF9WgHTegDaAhHQKiYvuCwr2B1fZQoaAZHQJWljhrFfiRoB03oA2gIR0ComtdBKL88dX2UKGgGR0CUzZ/1QIldaAdN6ANoCEdAqKML3XZoPHV9lChoBkdAmMOHJgb6xmgHTegDaAhHQKilDS1E3Kl1fZQoaAZHQJiDSNm16VtoB03oA2gIR0CopVAZjx0/dX2UKGgGR0CYQDsjVx0daAdN6ANoCEdAqKdvR7Z393V9lChoBkdAlkUSB5HEuWgHTegDaAhHQKivblqagEl1fZQoaAZHQJZt8hhYvFpoB03oA2gIR0CosW2kSElFdX2UKGgGR0CWylgqVhTgaAdN6ANoCEdAqLG2uV5a/3V9lChoBkdAl2AEjkdWAGgHTegDaAhHQKiz4uFpPAR1fZQoaAZHQIjFcuL74ztoB03oA2gIR0Cou+Z1Ng0CdX2UKGgGR0CT5Qthd+ocaAdN6ANoCEdAqL4B8x9G7XV9lChoBkdAl8d+rU9ZBGgHTegDaAhHQKi+SQCjk+51fZQoaAZHQJi5l+c6Nl1oB03oA2gIR0CowFy4e9zwdX2UKGgGR0CYXABo24usaAdN6ANoCEdAqMhq1XvH93V9lChoBkdAl2beVs1sL2gHTegDaAhHQKjKb2HLzPN1fZQoaAZHQJgfgkyDZlFoB03oA2gIR0CoyrKrR0EHdX2UKGgGR0CZJSsp5NXYaAdN6ANoCEdAqMy4TRIBinV9lChoBkdAmbmSnYQJ5WgHTegDaAhHQKjUsYv38Gd1fZQoaAZHQJg8+Ebo8p1oB03oA2gIR0Co1qpe3QUpdX2UKGgGR0CYm0QyyleoaAdN6ANoCEdAqNbq48U21nV9lChoBkdAmIfuhwl0HWgHTegDaAhHQKjY9ePaL4x1fZQoaAZHQJpzys90RvpoB03oA2gIR0Co4T0M5OrRdX2UKGgGR0CZ06pmEoOQaAdN6ANoCEdAqONos3AEdXV9lChoBkdAmqJkJfICEGgHTegDaAhHQKjjrU4rBj51fZQoaAZHQJpbawmmce9oB03oA2gIR0Co5boUi6g/dX2UKGgGR0CVrySc9W6taAdN6ANoCEdAqO3HW4EwFnV9lChoBkdAmb6K06YE4mgHTegDaAhHQKjvz1U2kzp1fZQoaAZHQJm+jqt5le5oB03oA2gIR0Co8BjWCmMwdX2UKGgGR0CZ/1kOZssQaAdN6ANoCEdAqPIgNb1RL3V9lChoBkdAmkTB1LamGmgHTegDaAhHQKj6SNPP9k11fZQoaAZHQJu6SeqaPS5oB03oA2gIR0Co/EChFmWddX2UKGgGR0CbpTw3HaN/aAdN6ANoCEdAqPyHzMA3k3V9lChoBkdAm8XzOs1baGgHTegDaAhHQKj+lRnezld1fZQoaAZHQJtiXAP/aQFoB03oA2gIR0CpBqENnXd1dX2UKGgGR0CaXfaEzwc6aAdN6ANoCEdAqQizS/j81nV9lChoBkdAmz/7BbfP5mgHTegDaAhHQKkI+A5q/M51fZQoaAZHQJtqHWMCLdhoB03oA2gIR0CpCw5vkzXSdX2UKGgGR0CV32PX05EMaAdN6ANoCEdAqRM21fE4vXV9lChoBkdAmff9A9mpVGgHTegDaAhHQKkVNRQaaTh1fZQoaAZHQJwBS0NSZShoB03oA2gIR0CpFXmQr+YMdX2UKGgGR0Caibcry1/laAdN6ANoCEdAqRex26kIonV9lChoBkdAnR+wiml67mgHTegDaAhHQKkf4S13MZB1fZQoaAZHQJtCLiVB2OhoB03oA2gIR0CpIekUCaJAdX2UKGgGR0CbXWrIHTqjaAdN6ANoCEdAqSIz9sJpnHV9lChoBkdAnAG2R3eN1mgHTegDaAhHQKkkX/rB0p51fZQoaAZHQJH/3eCTUy5oB03oA2gIR0CpLHdadMCcdX2UKGgGR0CPfddonKGMaAdN6ANoCEdAqS5+CNCJGnV9lChoBkdAksEcrupjt2gHTegDaAhHQKkuwfq5byJ1fZQoaAZHQIYi+5paibloB03oA2gIR0CpMNDgAIY4dX2UKGgGR0CQKMxSpBHDaAdN6ANoCEdAqTj0hmoR7XV9lChoBkdAl9175hz/62gHTegDaAhHQKk69EDyOJd1fZQoaAZHQJV2dUedTYNoB03oA2gIR0CpOznGS6lMdX2UKGgGR0CapNrmQr+YaAdN6ANoCEdAqT1BuCPIXHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee5e6ef12b30b1a99d800d0205c41aeb90c4e7d79702f9e40c7e0b1df574f06f
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef0c38f5c896e21e1f38ca3e1dbb71e3fd2fcb797ce182a32ac49a9ce4a34fc2
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff8d54ff70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff8d554040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff8d5540d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff8d554160>", "_build": "<function ActorCriticPolicy._build at 0x7eff8d5541f0>", "forward": "<function ActorCriticPolicy.forward at 0x7eff8d554280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff8d554310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff8d5543a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff8d554430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff8d5544c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff8d554550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff8d5545e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff8d54e7b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674626280336185171, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADswtb1/eL0+8vRHPwyqkD+sZzW/rvUcwI8gQj6cAww/+WciPwg7Zr9ywae+rVIrwPkqj7/vtFg/whj5vnAJrTyYOnA9fTG3Pym+bbl2aKw/KVmnPbGjt73BwYK/4s4iP17UND/W0Lw+ucEIP2Gznr/Ar3G9akk1P+5VPj9932i/79VUv0BL1L++h6g+prGxPbuq4DyIqRe/ieOBPlZ55b/z5lu+hVX7vE2eVL7sXjLAkK38vr+R8D8FcJI+iSnPvl6p5jzIxvE/o+OKvwbHVbxe1DQ/1tC8PrnBCD9hs56/C35DP9ohuz6v40c/MEJTvinPrr3raTjAVv5nPOubEb5j7x8/u0iiv+QkDj/M8ynAjz+Pvq4FBz82bK++qcAkwEJP375cRyZAYGiGvYrFbD9//Zg/LcyCP0j3ir8iXi28XtQ0P9bQvD6im++/YbOev3UWOj8BVpK/XG80v1bRFD8PUSHAggG+viclGb9xqcA+7NmFP/sFrr5jz1a+FbmuvurU679mTTU/HzsHvpKBHL8VzAY+HryKP4OOk78Bcje//CdbvpMxwT9WfIy/PvWiPV7UND/W0Lw+ucEIP2Gznr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADIGL61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABDbfvQAAAADXyNq/AAAAAOud1TwAAAAAGMHePwAAAADf5Ja9AAAAAFDM5z8AAAAAodL3PQAAAADDpN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjq40NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAq2aTwAAAAA+drxvwAAAADKOjE9AAAAAOWJ9D8AAAAAt2e6PAAAAAAhEuo/AAAAAFxDhr0AAAAA22bgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPCjDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB0fR29AAAAAIGH/L8AAAAA85L9vQAAAABb/vA/AAAAALAYBzwAAAAA8H70PwAAAAC9Xve9AAAAAD2R578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgyfa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAllCgvQAAAACvdO6/AAAAAFdSAL4AAAAA8Wb5PwAAAAD1PpI9AAAAAHC74T8AAAAAsBrVPQAAAADcqNq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJeSao4uK4yMAWyUTegDjAF0lEdAqAzT0Yj0MHV9lChoBkdAlquSEDhcaGgHTegDaAhHQKgOxuFYdQx1fZQoaAZHQJkOGax5cC5oB03oA2gIR0CoDwqbz9S/dX2UKGgGR0CYajdU83dcaAdN6ANoCEdAqBETuWrwOXV9lChoBkdAmD1AZCOWB2gHTegDaAhHQKgZNCoCMgl1fZQoaAZHQJevnqPfbbloB03oA2gIR0CoGzSHuZ1FdX2UKGgGR0CYLC5SFXaKaAdN6ANoCEdAqBt6CWeHz3V9lChoBkdAl7WHbRF7U2gHTegDaAhHQKgdnMB6rvN1fZQoaAZHQJkyNqFh5PdoB03oA2gIR0CoJe0Q9RrKdX2UKGgGR0CaGeVZLZi/aAdN6ANoCEdAqCgDcXWOInV9lChoBkdAmkWAHAymAWgHTegDaAhHQKgoSpMpPRB1fZQoaAZHQJot+RZEDyRoB03oA2gIR0CoKmdy1eBydX2UKGgGR0Cb4+1/Ue+3aAdN6ANoCEdAqDKUqWkadnV9lChoBkdAmvNtMwlByGgHTegDaAhHQKg0rPnB+F11fZQoaAZHQJq2iOcUdrBoB03oA2gIR0CoNPEC/47BdX2UKGgGR0CbpnMvysjnaAdN6ANoCEdAqDcLIPsiS3V9lChoBkdAmfpktZmqYWgHTegDaAhHQKg/GVO9FnZ1fZQoaAZHQJgKWApazNVoB03oA2gIR0CoQRXH7xd6dX2UKGgGR0CZezZRbbDeaAdN6ANoCEdAqEFbXOGCZnV9lChoBkdAmjWLDhtLtmgHTegDaAhHQKhDbtygf2d1fZQoaAZHQJyarFsHjZNoB03oA2gIR0CoS6adlNDddX2UKGgGR0CbQjpzLfUGaAdN6ANoCEdAqE2ikGiYcHV9lChoBkdAnCy8K9f1H2gHTegDaAhHQKhN6TCcf/51fZQoaAZHQJmYV/smfGxoB03oA2gIR0CoT/0QkHD8dX2UKGgGR0Ca8b2cawUyaAdN6ANoCEdAqFfvA0sOG3V9lChoBkdAnGojOkcjq2gHTegDaAhHQKhZ9YxL0z11fZQoaAZHQJ0hLSE12q1oB03oA2gIR0CoWjmRNh3JdX2UKGgGR0CbGb6+FlCkaAdN6ANoCEdAqFxpgogFHXV9lChoBkdAm6ngbZOBUmgHTegDaAhHQKhkc6cRUWF1fZQoaAZHQJ0yDWz4UN9oB03oA2gIR0CoZoNT1kDqdX2UKGgGR0Cbi2RJVbRnaAdN6ANoCEdAqGbHDaXa8HV9lChoBkdAnCuLGR3eN2gHTegDaAhHQKho3fMwDeV1fZQoaAZHQJiLbIYFaB9oB03oA2gIR0CocPQztTkydX2UKGgGR0CZKUqcmShbaAdN6ANoCEdAqHLr8R+SbHV9lChoBkdAmGWAF9roGWgHTegDaAhHQKhzMDAaef91fZQoaAZHQJq/p0W/JvJoB03oA2gIR0CodVNY0VJudX2UKGgGR0CWZLNg0CRwaAdN6ANoCEdAqH1sd1dPcnV9lChoBkdAk/tkZBLPEGgHTegDaAhHQKh/aSdOIqN1fZQoaAZHQJbvmUB4lhRoB03oA2gIR0Cof7YnndO7dX2UKGgGR0CRmIo0ALiNaAdN6ANoCEdAqIHVE/jbSXV9lChoBkdAlRYVrl/6PGgHTegDaAhHQKiJ9NATqSp1fZQoaAZHQJJnj4HoouxoB03oA2gIR0Coi/g7xNItdX2UKGgGR0CPCHf642CNaAdN6ANoCEdAqIw9uP3i73V9lChoBkdAlk+COFQEZGgHTegDaAhHQKiOVGjsUqR1fZQoaAZHQJSkuQXAM2FoB03oA2gIR0CollhRZU1idX2UKGgGR0CT6wpKBd2QaAdN6ANoCEdAqJhudK/VRXV9lChoBkdAlMM+85CF9WgHTegDaAhHQKiYvuCwr2B1fZQoaAZHQJWljhrFfiRoB03oA2gIR0ComtdBKL88dX2UKGgGR0CUzZ/1QIldaAdN6ANoCEdAqKML3XZoPHV9lChoBkdAmMOHJgb6xmgHTegDaAhHQKilDS1E3Kl1fZQoaAZHQJiDSNm16VtoB03oA2gIR0CopVAZjx0/dX2UKGgGR0CYQDsjVx0daAdN6ANoCEdAqKdvR7Z393V9lChoBkdAlkUSB5HEuWgHTegDaAhHQKivblqagEl1fZQoaAZHQJZt8hhYvFpoB03oA2gIR0CosW2kSElFdX2UKGgGR0CWylgqVhTgaAdN6ANoCEdAqLG2uV5a/3V9lChoBkdAl2AEjkdWAGgHTegDaAhHQKiz4uFpPAR1fZQoaAZHQIjFcuL74ztoB03oA2gIR0Cou+Z1Ng0CdX2UKGgGR0CT5Qthd+ocaAdN6ANoCEdAqL4B8x9G7XV9lChoBkdAl8d+rU9ZBGgHTegDaAhHQKi+SQCjk+51fZQoaAZHQJi5l+c6Nl1oB03oA2gIR0CowFy4e9zwdX2UKGgGR0CYXABo24usaAdN6ANoCEdAqMhq1XvH93V9lChoBkdAl2beVs1sL2gHTegDaAhHQKjKb2HLzPN1fZQoaAZHQJgfgkyDZlFoB03oA2gIR0CoyrKrR0EHdX2UKGgGR0CZJSsp5NXYaAdN6ANoCEdAqMy4TRIBinV9lChoBkdAmbmSnYQJ5WgHTegDaAhHQKjUsYv38Gd1fZQoaAZHQJg8+Ebo8p1oB03oA2gIR0Co1qpe3QUpdX2UKGgGR0CYm0QyyleoaAdN6ANoCEdAqNbq48U21nV9lChoBkdAmIfuhwl0HWgHTegDaAhHQKjY9ePaL4x1fZQoaAZHQJpzys90RvpoB03oA2gIR0Co4T0M5OrRdX2UKGgGR0CZ06pmEoOQaAdN6ANoCEdAqONos3AEdXV9lChoBkdAmqJkJfICEGgHTegDaAhHQKjjrU4rBj51fZQoaAZHQJpbawmmce9oB03oA2gIR0Co5boUi6g/dX2UKGgGR0CVrySc9W6taAdN6ANoCEdAqO3HW4EwFnV9lChoBkdAmb6K06YE4mgHTegDaAhHQKjvz1U2kzp1fZQoaAZHQJm+jqt5le5oB03oA2gIR0Co8BjWCmMwdX2UKGgGR0CZ/1kOZssQaAdN6ANoCEdAqPIgNb1RL3V9lChoBkdAmkTB1LamGmgHTegDaAhHQKj6SNPP9k11fZQoaAZHQJu6SeqaPS5oB03oA2gIR0Co/EChFmWddX2UKGgGR0CbpTw3HaN/aAdN6ANoCEdAqPyHzMA3k3V9lChoBkdAm8XzOs1baGgHTegDaAhHQKj+lRnezld1fZQoaAZHQJtiXAP/aQFoB03oA2gIR0CpBqENnXd1dX2UKGgGR0CaXfaEzwc6aAdN6ANoCEdAqQizS/j81nV9lChoBkdAmz/7BbfP5mgHTegDaAhHQKkI+A5q/M51fZQoaAZHQJtqHWMCLdhoB03oA2gIR0CpCw5vkzXSdX2UKGgGR0CV32PX05EMaAdN6ANoCEdAqRM21fE4vXV9lChoBkdAmff9A9mpVGgHTegDaAhHQKkVNRQaaTh1fZQoaAZHQJwBS0NSZShoB03oA2gIR0CpFXmQr+YMdX2UKGgGR0Caibcry1/laAdN6ANoCEdAqRex26kIonV9lChoBkdAnR+wiml67mgHTegDaAhHQKkf4S13MZB1fZQoaAZHQJtCLiVB2OhoB03oA2gIR0CpIekUCaJAdX2UKGgGR0CbXWrIHTqjaAdN6ANoCEdAqSIz9sJpnHV9lChoBkdAnAG2R3eN1mgHTegDaAhHQKkkX/rB0p51fZQoaAZHQJH/3eCTUy5oB03oA2gIR0CpLHdadMCcdX2UKGgGR0CPfddonKGMaAdN6ANoCEdAqS5+CNCJGnV9lChoBkdAksEcrupjt2gHTegDaAhHQKkuwfq5byJ1fZQoaAZHQIYi+5paibloB03oA2gIR0CpMNDgAIY4dX2UKGgGR0CQKMxSpBHDaAdN6ANoCEdAqTj0hmoR7XV9lChoBkdAl9175hz/62gHTegDaAhHQKk69EDyOJd1fZQoaAZHQJV2dUedTYNoB03oA2gIR0CpOznGS6lMdX2UKGgGR0CapNrmQr+YaAdN6ANoCEdAqT1BuCPIXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c50f1ea425e9ab49442a9316bfbffb3f6cd2f8a6ba27eba351ef5d398efc67cf
3
+ size 1214503
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1575.0219686419819, "std_reward": 97.3166753958372, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-25T06:54:32.993101"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e5d5ce1fb1974d2fdb294f519f5fa75085836079522f026d85ca919f07e8a7a
3
+ size 2136