--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: zh datasets: - lmqg/qg_zhquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。" example_title: "Question Generation Example 1" - text: "芝加哥大学的 1960—61 集团理论年汇集了Daniel Gorenstein、John G. Thompson和Walter Feit等团体理论家,奠定了一个合作的基础,借助于其他众多数学家的输入,1982中对所有有限的简单群进行了分类。这个项目的规模超过了以往的数学研究,无论是证明的长度还是研究人员的数量。目前正在进行研究,以简化这一分类的证明。如今,群论仍然是一个非常活跃的数学分支,影响着许多其他领域" example_title: "Question Generation Example 2" model-index: - name: lmqg/mt5-small-zhquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_zhquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 13.33 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 32.71 - name: METEOR (Question Generation) type: meteor_question_generation value: 22.75 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 76.37 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 56.87 --- # Model Card of `lmqg/mt5-small-zhquad-qg` This model is fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) for question generation task on the [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-small](https://huggingface.co./google/mt5-small) - **Language:** zh - **Training data:** [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="zh", model="lmqg/mt5-small-zhquad-qg") # model prediction questions = model.generate_q(list_context="南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。", list_answer="南安普敦中央") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-zhquad-qg") output = pipe("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co./lmqg/mt5-small-zhquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_zhquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 76.37 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | Bleu_1 | 35.17 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | Bleu_2 | 24.12 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | Bleu_3 | 17.62 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | Bleu_4 | 13.33 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | METEOR | 22.75 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | MoverScore | 56.87 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | ROUGE_L | 32.71 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_zhquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: google/mt5-small - max_length: 512 - max_length_output: 32 - epoch: 11 - batch: 16 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co./lmqg/mt5-small-zhquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```